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Preface

This report contains the 2004 annual progress reports of the Research Fellows and
students of the Center for Turbulence Research in its eighteenth year of operation. A
separate report documenting the findings from the tenth biennial CTR Summer Program
which included fifty participants from fourteen countries was published earlier this year.
CTR publications, including this report and the Summer proceedings are available on
the world wide web (http://ctr.stanford.edu).

Since its inception in 1987, the objective of the CTR has been to advance the physical
understanding of turbulent flows and development of physics based predictive tools for
engineering analysis and turbulence control. Turbulence is ubiquitous in nature and in
engineering devices. The studies at CTR have been motivated by applications where tur-
bulence effects are significant; these include a broad range of technical areas such as plan-
etary boundary layers, formation of planets, solar convection, magnetohydrodynamics,
environmental and eco systems, aerodynamic noise, propulsion systems and high speed
transportation. Numerical simulation has been the predominant research tool at CTR
which has required a critical mass of researchers in numerical analysis and computer
science in addition to core disciplines such as applied mathematics, chemical kinetics
and fluid mechanics. Maintaining and promoting this interdisciplinary culture has been
a hallmark of CTR and has been responsible for the realization of the results of its basic
research in applications. Continued demonstration of the utility of research results in ap-
plications has, in turn, led to a strong and mutually beneficial relationship with industry
through Stanford’s Thermal and Fluid Sciences Industrial Affiliate Program.

Last year CTR hosted thirteen resident Postdoctoral Fellows, eleven Research As-
sociates, and ten Senior Fellows. The support for the Research Associates and Senior
Fellows were largely provided by the Department of Energy’s ASC program at Stanford.
The major portion of Stanford’s graduate student research in turbulence which is carried
out at CTR is sponsored by the United States Air Force Office of Scientific Research,
the Office of Naval Research and the Department of Energy.

The first group of reports in this volume are directed towards development, analysis
and application of novel numerical methods for flow simulations. Development of methods
for large eddy simulation of complex flows has been a central theme in this group. The
second group is concerned with turbulent combustion, scalar transport and multi-phase
flows. The final group is devoted to geophysical turbulence where the problem of solar
convection has been a new focus of considerable attention recently at CTR.

The CTR roster for 2004 is provided in the Appendix. Also listed are the members of
the CTR Steering Committee which has met quarterly to act on fellowship applications.
We have also included, with a deep sense of gratitude, a list of all members of the Advisory
Committee who have served the Center for Turbulence Research since its inception in
1987. Without their invaluable insights, and the intellectual and infrastructure support
of NASA, CTR would not have been able to serve the international turbulence research
community in the comprehensive fashion it has become known for.

It is a great pleasure to thank Millie Chethik for her day to day management of the
Center and together with Dr. Xiaohua Wu for their skillful compilation of this report.

Parviz Moin
Nagi N. Mansour
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Energy conservation in collocated discretization
schemes on unstructured meshes

By F. Ham AnND G. Iaccarino

1. Motivation and Objectives

Recently, Mahesh et al. (2004) proposed a control-volume-based collocated fractional
step method for the incompressible Navier-Stokes equations suitable for large-eddy simu-
lation (LES) and direct numerical simulation (DNS) on hybrid unstructured grids. Their
approach emphasizes kinetic energy conservation for the convection and pressure terms.
A significant contribution of their work is a novel least-squares pressure gradient recon-
struction, which attempts to minimize the non-conservation of the pressure term in the
context of a collocated discretization. They report that this least squares reconstruc-
tion was found imperative to obtain robust, accurate solutions in the presence of highly
skewed elements; unstable solutions were obtained in its absence.

The present report describes our efforts to develop an alternative reconstruction for
pressure by considering consistency in the presence of mesh skewness as an additional
constraint to that of the minimization of any non-conservation of kinetic energy.

2. Algorithm

Figure 1 illustrates the location of variables used in the present formulation, with the
full velocity vector u; and pressure p stored at the control volume centroid, and the normal
component of velocity U stored at each face. Based on this arrangement of variables,
a fractional-step semi-discretization of the incompressible Navier-Stokes equations with
good kinetic energy conservation properties is as follows (Kim & Moin 1985; Zang et al
1994; Kim & Choi 2000; Mahesh et al. 2004):
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In the above notation, the subscript p indicates a value associated with the control vol-
ume, and nbr indicates a neighbor control volume sharing a common face f. Superscripts
are used to indicate time level. We have of course not included the viscous terms.

On staggered grids, one can immediately take the divergence of the last equation (2.3)
and get a Poisson system for pressure, using continuity to eliminate the dependence on
the unknown velocity u}fjl. With a collocated formulation, however, this will lead to the

well-known velocity /pressure decoupling, and it is necessary to introduce some smoothing
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FIGURE 1. Spatial location of variables for collocated discretization.

to the pressure. In the present approach, we introduce the necessary smoothing implicitly
by interpolation. Writing equation 2.3 at the face in the face-normal direction:

U}H_l _ U}k 6]7 n+1/2

At ~on (2.4)

Taking the discrete divergence of of eqn 2.4, and using the continuity equation } ; U}“LlA ¥

0 yields a Poisson system for pressure which can be solved and used to correct the face
normal velocity components to be divergence-free.
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In the previous equations, the required pressure gradients have been left in differential
form. Their precise discrete form is the focus of this work.

3. Conservative Properties

In their differential form, the incompressible Navier-Stokes equations conserve mass,
momentum, and kinetic energy (in the inviscid limit). The kinetic energy equation can
be derived by contracting the momentum equation with the velocity vector, u;. In the
absence of viscosity, all terms can be rearranged to yield either a divergence form or the
continuity equation (i.e. zero), and thus kinetic energy conservation is a property of the
underlying equations. For example:
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Expanding each of the 3 resulting terms yields:
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We can apply the same procedure to our discrete system to investigate its conservation
properties. Here we operate on the sum of equations (2.1), (2.2) and (2.3). For the
unsteady term:
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where the superscripts that indicate the mid-point in time (a simple average) are dropped
in the second line. The first term on the RHS of equation (3.6) is in discrete divergence
form and, therefore, is discretely conservative. The second term includes the discrete
continuity equation as a factor, and is zero locally and globally.

For the pressure term, we initially use a Green-Gauss reconstruction with equal-
weighted interpolations to the faces as follows:
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Once again we have dropped the superscripts that indicate the midpoint in time. The
first term on the RHS of equation (3.7) is in discrete divergence form and thus is
discretely conservative. Although the second term looks like a discrete divergence of
the velocity field, it will not (necessarily) be zero when continuity is satisfied because
(Wip + Winpr)nis/2 # Us. As pointed out by Mahesh et al., minimizing the non-



6 Ham & Iaccarino

conservation of kinetic energy associated with the pressure term is analogous to min-
imizing the magnitude of this discrete divergence.

Using equations (2.2) and (2.4), the continuity-like portion of the pressure term can
be rearranged as follows:
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In arriving at this expression, we have employed a definition of U} that affords the
simplification to terms involving pressure only, namely:
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It is straightforward to show that the non-conservative term is a discrete approximation
to a term involving the 4th derivative of pressure. Using a Taylor-series expansion of
Op/On at each control volume associated with a face and assuming a control volume
spacing of An:
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In the kinetic energy equation, it is also straightforward to show that the effect of this
non-conservative term is dissipative:
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FIGURE 2. Skewed two-dimensional mesh with mesh spacing A and skewness angle a.
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The first term is in divergence form, and thus will not add or remove to the kinetic
energy, but just redistribute it between adjacent control volumes (assuming constant At
and Awz;). The right-most term is a square and thus the net effect on K is guaranteed
dissipative. Note that the summation convention does not apply to the individual terms
involving pressure in equation (3.11).

4. Discussion

The algorithm thus far has been developed using equally-weighted interpolations. On
meshes with skewness and non-uniform spacing, these approximations can introduce
significant errors that manifest in a lack of robustness.

To address this problem, Mahesh et al. developed a face-area-weighted least-squares
minimization to reconstruct the pressure. Their choice of weighting is motivated by the
form of the non-conservative term in equation (3.8). For example, at control volume p the
following error expression is minimized with respect to the three unknown components

of the gradient at point p:
0 ’
D
Ep = E Ay <—9$i f) (4.1)
f

where the normal component of the pressure gradient at each face is approximated as:
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Consider the two-dimensional skewed mesh shown in figure 2. This mesh has been
skewed by angle a such that the face areas remain the same in all directions. Applying
this least-squares reconstruction yields the following expressions for the components of
the pressure gradient at point p:
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Cartesian mesh
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FIGURE 3. Laminar channel flow at Re = Uh/v = 10 at steady-state for both a Cartesian grid
and a skewed grid using the least-squares pressure gradient reconstruction. Contour spacing is
the same for both pressure plots.
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Note the counterintuitive result that the y-component of the gradient is unaffected
by the skew angle. To illustrate how this can significantly affect the accuracy of a com-
putation on skewed grids, consider the problem of a laminar channel with a specified
uniform velocity at the inlet. At Reynolds number Re = Uh/v = 10, where h is the
channel height, the flow can be integrated to steady-state, yielding the expected laminar
parabolic profile with uniform pressure drop, as illustrated in the computation shown
in figure 3. For the Cartesian case, the predicted pressure gradient exactly matches the
theoretical result required to balance the viscous drag in the downstream region.

When significant skewness is introduced to the mesh, however, the contours of pressure
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become skewed as well, and the pressure drop is significantly under-predicted (also figure
3. For calculations involving more complex geometries, such as a swirl nozzle in a jet
engine combustor, it is very difficult to avoid mesh skewness in the many small passages
involved, and an alternative pressure reconstruction is considered necessary to improve
the accuracy of the predictions.

5. An alternative reconstruction

Using the Green-Gauss reconstruction, the expressions for the gradient components on
the two-dimensional skewed mesh shown in figure 2 would be:

op| _ (pe —pw) cos(a)

Bz, = 24 (5-1)
dp| _ pn —ps — (pE — pw) sin(a)

dyl, 2 A (5:2)

The solution to the problem of skewness sensitivity of the results, however, is not
quite as simple as replacing the least-squares reconstruction with Green-Gauss. The
approximation to the normal derivative used in formulating the Poisson system must
also properly account for any skewness. Following Zwart (Zwart 1999), we write the
normal pressure gradient at the face in terms of a component along the unit vector
formed by joining the two control volume centroids s; s:

Op Op n
a.. = 3. zvf
6TL f 63),’ f
_ Op D
= 3 fafsz,f * e ; (ni,p — aysi,f) (5.3)

where we have introduced the face-based scalar ay. The first term on the RHS of equation
(5.3) can be approximated to second order using;:
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For the second term, we can use the simple average of the Green-Gauss gradients at
the adjacent control volume centroids p and nbr, yielding the following expression for the
full normal component:
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where it remains to define the most suitable value of ay. At this point it is instructive to
substitute this expression for the normal gradient into the non-conservative term derived

earlier in equation (3.8).
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FIGURE 4. Laminar channel flow at Re = Uh/v = 10 using a skewed grid and the Green-Gauss
pressure reconstruction with skew corrections.

. op 1 ( Op
= OéfAt; [& — 5 <a$z nbr) Si,f

So minimization of the non-conservation of kinetic energy due to the pressure term is
equivalent to minimizing the above expression, or specifically minimizing a;s. The choice
ay = 0 would actually result in a formulation that discretely conserves kinetic energy,
but would of course also lead to the decoupling of velocity and pressure in the collocated
formulation. In the present work, we choose the dot product oy = s; ¢n;, , which yields
a = 1 when the mesh is locally orthogonal, and always less than one when skewed. This
is the same choice as ultimately made by Zwart, although in our case the justification is
based on reducing the non-conservation of kinetic energy in the presence of skewness.

o
63&'i

A; (5.6)

p

6. Results
6.1. Skewed channel

Figure 4 shows the results of the skewed laminar channel flow calculated using the Green-
Gauss pressure reconstructions with face normal pressure gradient components approx-
imated as described in the previous section. The correct mean pressure gradient in the
fully developed part of the channel is recovered.

6.2. Skewed Taylor vorticies

The Taylor vortex problem is a second example that can be used to illustrate the sensitiv-
ity of the two reconstructions to skewness. The flow field consists of an array of decaying
vortices with the following analytic expressions for velocity and pressure:

u= —cos(ﬁx)sin(wy)e*%it (6.1

v= sin(ww)cos(wy)e_% (6.2)
1 2t

p= —Z(cos(2mﬂ) + cos(2my))e” e (6.3)

where Re is the Reynolds number based on unit length and velocity scales. It is possible
to integrate the kinetic energy over the periodic domain as well, yielding:
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FI1GURE 5. Kinetic energy for inviscid simulations of taylor problem on 32 x 32 Cartesian grid:
A calculation with Az = 2/32, At = 0.01; o calculation with Az = 2/32, At = 0.02; equa-
tion (6.7). Both the least-squares and Green-Gauss reconstructions are identical for this case.

1 (Y w2 40?
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tay v 1 L ) ( )
1 w2t
= Ze—%e (6.5)

Solving the Taylor problem in the limit of infinite Reynolds number should result in
a steady solution of non-decaying vortices with constant kinetic energy, K = 1/4. To
perform this numerical experiment, a square domain was used with dimensions —1 <
z <1, and —1 < y <1 and periodic boundary conditions. We note that other authors
have typically used Dirichlet boundary conditions by applying the analytic velocity at the
boundary. The use of periodic boundary conditions allows us to confirm numerically the
non-conservation present in the scheme without the need to account for energy transfers
at the boundaries. Using the analytic expression for pressure in the inviscid limit, the
integration of the non-conservative term in the kinetic energy equation (3.11) over the
periodic domain yields (per unit volume):

oK 1 [t ! AtAz? o'p

7

7T4 2
=~ AtAr (6.7)

where we have assumed a uniform cartesian grid with Az = Ay.
Skewness can be introduced in the Cartesian mesh used for the Taylor problem by the
following transformation:

z' =z + Bsin(my) (6.8)
y' =y + Bsin(rz) (6.9)

where the parameter 8 controls the amount of skewness. Figure 6 compares a 32 x 32
Cartesian grid with one that has been skewed using g = 0.2.
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FI1GURE 6. Comparison of Cartesian and Skewed meshes used for Taylor problem. Skew
transformation is equation (6.9) with the g = 0.2.

(b) Green-Gauss reconstruction at t = 0,0.25,0.5

F1GURE 7. Contours of u-velocity from the inviscid Taylor problem on the skewed mesh shown in
figure 6 comparing results for different pressure reconstructions.Contour spacing is 0.2. Results
have been copied in periodic directions for clarity.
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Fi1GURE 8. Kinetic energy for inviscid simulations of taylor problem on 32 x 32 skewed grid:
, ———— present reconstruction for At = 0.01,0.02 respectively; —-— -------- mahesh et
al. for At = 0.01, 0.02 respectively.
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FIGURE 9. Kinetic energy for inviscid simulations of taylor problem on 32 x 32 Cartesian and
skewed grid: A Cartesian grid with Az = 2/32, At = 0.01; o Cartesian grid with Az = 2/32,
At = 0.02; Solid symbols are the skewed grid results for the same grid size and time step;
equation (6.7) for both cases.

Computations were carried out on the skewed grid using the least-squares pressure
reconstruction and the Green-Gauss reconstruction. Figure 7 compares contour plots of
the instantaneous u-velocity field at three equally spaced times. The least-squares recon-
struction significantly alters the velocity field, and actually increases the total kinetic
energy. Figure 9 compares the time history of the integrated kinetic energy for both re-
constructions for 2 different computational time steps. For this problem, the least-squares
reconstruction resulted in the eventual divergence of the solution.

The reconstruction of Zwart, however, remains very well behaved, accurately retaining
the vortex pattern even on the highly skewed grid. A slight reduction in kinetic energy
was observed over the course of the simulation. Figure 9 compares the time history of the
kinetic energy to the Cartesian results reported earlier, along with the analytic result.
Apart from the slight discrepency in the initial condition, which does not yield exactly
K =0.25 when summed on the grid, the behavior is nearly identical.
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7. Conclusions

Modifications to the pressure gradient reconstruction for both the normal component
at the face and the full gradient at the control volume centroid have been proposed
and analyzed analytically in terms of their impact on kinetic energy conservation. The
analytic results have been confirmed numerically using inviscid simulations of Taylor
vortices. The modified reconstruction has been shown to substantially improve the accu-
racy and conservation properties of the algorithm in the presence of mesh skewness. The
only apparent drawback of this modified approach is the increase in stencil size of the
resulting Poisson system, which must now include immediate neighbors, and neighbors
of neighbors. Work is ongoing to analyze the accuracy and robustness of the reconstruc-
tion in the presence of non-uniform grid spacing, where the equal weightings used in the
Green-Gauss gradient reconstruction (and required for kinetic energy conservation) can
introduce substantial errors.
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On mass conservation and desingularization of the
Level Set/Vortex Sheet method

By M. Herrmann

1. Motivation and objectives

The Level Set/Vortex Sheet (LSVS) method has been introduced by Herrmann (2002,
2003b, 2004a,b). Its objective is to provide a framework for the derivation of the so
called Large Surface Structure (LSS) model (Herrmann 2003b) that describes the primary
breakup of turbulent liquid jets and sheets. The advantage of the LSVS method as
compared to other, more traditional approaches is the fact that it contains explicit local
source terms for each individual physical process that occurs at the phase interface, thus
making these directly accessible to modeling attempts of the LSS subgrid terms.

As has been argued by Yecko et al. (2002) and Li et al. (2004), viscous effects might play
an important role during primary breakup. The LSVS method, on the other hand, has
been derived theoretically for the limit of inviscid fluids. However, its numerical imple-
mentation necessitates the introduction of a desingularization of the governing equations
by introducing shear layers of finite width (Herrmann 2004 a), thus imitating some effects
of viscous fluids to a certain extend. This effect shall be analyzed in this paper.

Furthermore, as with any level set based method, the problem of mass conservation
has to be addressed. To this end, different level set correction methods have already been
proposed (Bourlioux 1995; Sussman & Fatemi 1999; Enright et al. 2002). Unfortunately,
within the scope of the LSVS method, these correction methods lead to unacceptable
fluctuations in the surface tension term due to the fact that all corrections are performed
locally (Herrmann 2004a). On this account, a method to de-localize the correction meth-
ods has been proposed by Coyajee et al. (2004), resulting in significant, but unfortunately
insufficient improvements with respect to the LSVS method. Hence, an alternative and
rather simple and straightforward approach is proposed here, named refined level set grid
(RLSG) method.

This paper is divided into three parts. First, the governing equations of the LSVS
method for three-dimensional two-phase interface dynamics are summarized. Also, the
numerical methods employed to solve the LSVS equations and the RLSG method and
its implications within the LSVS method are presented. Second, numerical results are
presented addressing both the performance of the RLSG method and the effect of desin-
gularization inherent in the LSVS method. Finally, conclusions are drawn and an outlook
to future work is given.

2. The Level Set/Vortex Sheet method

The LSVS method describes the dynamics of the phase interface I’ between two invis-
cid, incompressible fluids 1 and 2, as shown in Fig. 1. Defining the iso-surface of a level
set scalar G = 0 to be the location of the phase interface, the motion of I' can be tracked
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FI1GURE 1. Phase interface definition. FIGURE 2. Refined level set grid definition.
by the so called level set equation (Osher & Sethian 1988),
oG

where wu is the velocity vector.

The velocity field generated by the phase interface can be described by a vortex sheet
strength 1, which is equal to the jump in tangential velocity at the phase interface. The
transport equation for i (Pozrikidis 2000; Herrmann 2003) is given by

86_;7+u.vn:—nx[(nxn)-Vu]+n[(VU'n)'77]
+%(n X Vk) +24An X a. (2.2)

Here, n is the interface normal vector, A the Atwood number, We the Weber number,
k the interface curvature, and a is the average acceleration of fluid 1 and fluid 2 at the
interface. Note that Eq. (2.2) contains on the right hand side individual, local source
terms describing the physical processes at the phase interface explicitly, namely, from
left to right, two stretching terms, a surface tension term, and a density difference term.

Strictly speaking, Eqgs. (2.1) and (2.2) are valid only at the location of the interface
itself. However, to facilitate the numerical solution of both equations throughout the
whole computational domain, 1) is set constant in the interface normal direction,

Vn-VG =0, (2.3)
and @ is chosen to be a distance function away from the interface,

VG =1. 2.4

vl . (249

Equations (2.1) and (2.2) are coupled by the self-induced velocity u of the vortex sheet.
To calculate u, the vector potential 1) is introduced,

AYp=w. (2.5)

Here, the vorticity vector w is calculated following a vortex-in-cell type approach (Chris-
tiansen 1973; Cottet & Koumoutsakos 2000) by either

w(x) = /Fn(:cr)é(w —xr)dzr , (2.6)
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named method My in the following, or
w(x) = / n(z')é(z — x')6 (G(') — Go) |[VG(2")|dz’, (2.7)
v

named method M3j. In general, method M, is preferable, because Eq. (2.6) ensures vor-
ticity conservation (Herrmann 2004a). However, M, necessitates the geometric recon-
struction of the interface location and is thus very tedious in three dimensions. Therefore,
method M5 is used in two-dimensions, whereas M3 is the method of choice in three-
dimensions.

In Egs. (2.6) and (2.7), d is the delta-function that is approximated by the following
smoothed version (Peskin 1977),

ag(a:):{ 2_15[1“(;’5(?)] olel<e (2.8)

|z| > e

Note that this in fact changes the tangential velocity boundary condition at the phase
interface from a jump, as appropriate for inviscid fluids, to a smoothed, constant shear
layer thickness type boundary condition, reminiscent of viscous fluids. It is in principle
possible to recapture the shear layer thickness and profile of viscous fluids by modifying
¢ and the functional form of Eq. (2.8), however, in the present work, Eq. (2.8) is used as
shown and only the effect of varying the shear layer thickness is analyzed.

Finally, u can be calculated from

u(z) = /‘/5(3: —z')(V x ) dz’. (2.9)

In summary, Egs. (2.1), (2.2), and (2.5) - (2.9) constitute the LSVS method and de-
scribe the three-dimensional two-phase interface dynamics.

2.1. Numerical methods

Numerically, Egs. (2.1) and (2.2) are solved in a narrow band (Peng et al. 1999) by a
5*h_order WENO scheme (Jiang & Peng 2000) using a 3"4-order TVD Runge-Kutta time
discretization (Shu & Osher 1989). The reinitialization of G (2.4) is solved by the iterative
procedure outlined in Sussman et al. (1994) and Peng et al. (1999). The redistribution
of n, Eq. (2.3), is solved by a Fast Marching Method (Sethian 1996; Adalsteinsson &
Sethian 1999; Herrmann 2003a). The interested reader is referred to Herrmann (2002,
20034, 20044) for a detailed description of the numerical methods employed in the level
set/vortex sheet method and a summary of the domain decomposition parallelization
approach used.

2.1.1. Refined Level Set Grid (RLSG) method

Tracking interfaces by a standard level set approach (Osher & Sethian 1988) unavoid-
ably introduces volume, respectively mass errors that are proportional in size to the
employed numerical grid size. To avoid these errors, two different approaches can be
followed in principle. One can correct the level set solution using an interface tracking
method that either inherently preserves the volume, as for example the volume of fluid
method (Noh & Woodward 1976; Kothe & Rider 1995; Gueyflier et al. 1999), or at least
preserves the volume with higher accuracy than the level set method alone, like for exam-
ple marker particles (Brackbill et al. 1988; Rider & Kothe 1995; Unverdi & Tryggvason
1992). Correction methods along these lines have been proposed by Bourlioux (1995),
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Sussman & Fatemi (1999), Enright et al. (2002), and van der Pijl et al. (2004). Alterna-
tively, one can reduce the mass error by refining the underlying numerical grid. This can
be done adaptively (Ham & Young 2003). However, this introduces an additional level
of complexity that is not necessary in certain cases. Since the goal of the LSVS method
is to perform three-dimensional DNS of the primary breakup process, it can be assumed
that a refined grid is necessary in large portions of the phase interface. The grid on which
the level set equation is solved shall thus be refined as a whole. Note that due to the
narrow band implementation, this does not constitute a prohibitive numerical cost, since
the G-grid needs only be stored in a small neighborhood of the G' = 0 iso-surface, see Fig.
2. This refined level set grid (RLSG) method is described in more detail in the following,.

Let Az be the cell size of the equidistant Cartesian grid on which the n-equation,
Eq. (2.2), is solved. This grid is termed the n-grid in the following. The level set equation,
Eq. (2.1), is then solved on a narrow band consisting of equidistant Cartesian grid cells
of size Agz width

Agz = Az/ng, (2.10)

where ng is the grid refinement factor. The width of the narrow band ar,g is chosen
in such a way that enough cells are present to allow for the evaluation of the 5*"-order
WENO stencil during a single CFL-limited time step on the n-grid. To fulfill the CFL-
criterion on the G-grid, subcyling typically has to be employed. This results in a width
of the narrow band of

. 9Agx : ng <4
TG = { (1.5ng +3)Agz : ng >4’ (211)

see Fig. 2. All other narrow band widths described in Herrmann (2003a, 2004a) are
defined accordingly.

The coupling of the n-grid and the G-grid is two-fold: for one, the level set scalar field
solved on the finer G-grid has to be transferred to the n-grid. Let G be the level set
scalar defined on the G-grid and Gy be the level set scalar defined on the n-grid. Then,
remembering that any G is defined as the distance function away from the interface,
the embedded interface Gg = 0 can be viewed as a higher order approximation of the
interface as defined by Gy = 0. This implies that at the same node location, the value of
G should be exactly equal to the value of Gg, since both values describe the distance
to the same interface geometry. It is important to note that this coupling does not
constitute a filtering operation of Gg to Gg. To do this, a more complex marker particle
based scheme would have to be employed (Oberlack et al. 2001; Pitsch 2002). Here, the
goal is rather to make use of a higher order approximation of the interface to eliminate
numerical errors on the coarser grid.

In practice, Gy is determined from G¢ on all n-grid nodes that are directly adjacent
to the Gy = 0 interface. All other Gy values up to a certain distance away from the
interface are then reconstructed using the Fast Marching Method.

Secondly, the velocity w is initially only defined on the n-grid. To solve Eq. (2.1), u
has to be transferred to the G-grid. This is done by simple trilinear interpolation.

Additionally, by solving the level set equation separate from the n-equation on a refined
grid, the RLSG method allows for a different approach in calculating the source terms
in Eq. (2.2). These can still be evaluated using Gy (Herrmann 2004a). However, to
make full use of the available geometry information on the G-grid, these source terms
S(zp) defined on the n-grid can now also be evaluated using G on the G-grid and then
surface averaged onto the n-grid. This process is a three-step procedure: first, all source
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terms on the right-hand side of Eq. (2.2) are evaluated on the G-grid. Then, these terms
are redistributed in the interface normal direction by solving Eq. (2.3) using the Fast
Marching Method. Finally, the surface integration is performed by evaluating

s _ fAFn S(wFG)dCBFG B fAVn S(wg)é(Gg(wg))|VGg(wg)|de
) T @ Jany 0Go@a)NGa@adme

(2.12)

where ATy is the part of the Gg = 0 interface that lies within the n-cell located at )
and AVyp is the volume of that n-grid cell. The integration above is performed on the
G-grid.

Using this procedure also avoids one potential pitfall when evaluating the surface
tension term. Using finite differences, this term involves a stencil that extends at least
three cells in the front normal direction. Thus, as soon as two fronts approach each
other closer than six grid cells, the results for the surface tension term will be incorrectly
influenced due to the single valued nature of G. Ideally the surface tension term should
depend only on the position of the interface, requiring a geometric reconstruction of the
interface location which is tedious in three dimensions.

To alleviate the stencil problem, the calculation of the surface tension term is split into
three steps. First, the curvature k is calculated on the G-grid using a standard 3x3x3
stencil. Then, & is redistributed on the G-grid using the Fast Marching Method. Finally,
V X k is evaluated using central differences. The intermediate FMM step effectively
limits the stencil size of the surface tension term to just two cells in the interface normal
direction, thereby improving the results considerably.

Note that using a G-grid of ng > 4, interfaces can now approach each other up to Az,
before the stencil problem occurs. Modifying the surface averaging step in such a way,
that G-nodes with two fronts closer than 4Agx are rejected in the averaging procedure,
will then avoid the stencil problem alltogether. The derivation of such an averaging
procedure will be addressed in future work.

3. Results
3.1. Zalesak’s disk

The solid body rotation of a notched circle, also known as Zalesak’s disk (Zalesak 1979),
is one of the standard test problems for evaluating the accuracy of level set methods. A
disk of radius 0.15, notch width 0.05, and notch height 0.25 is placed in a 1 x 1 box at
(0.5,0.75). The velocity field is given by

u(xz,t) = (0.5 —y,z — 0.5) . (3.1)

Figure 3 shows the shape of the interface at t = 27 after one full rotation of the disk
using no correction scheme, the particle correction method, and the RLSG method with
varying ng. Obviously, using no correction method at all causes the notch height to
decrease substantially and the lower sharp corners to become significantly rounded. This
in turn increases the area A/Ay of the disk and decreases the length of the interface s/sg
considerably, as shown in Fig. 4.

Using the particle correction method improves the results significantly. However a slight
asymmetry occurs. The area of the disk decreases slightly, see Tab. 1, while showing
noticeable fluctuations over time, Fig. 4. These are due to the local, non-continuous
correction step of the particle correction method.
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FIGURE 3. Interface shape after one full rotation of Zalesak’s disk. Solid line denotes numerical
solution and dash-dotted line is exact solution. From left to right: no correction method, particle
correction method, RLSG method ng = 2, ng = 4, and ng = 8.
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FIGURE 4. Normalized area A/Ao (left) and interface length s/so (right) during one full rotation
of Zalesak’s disk. Particle correction method (solid line), no correction method (open box), RLSG
method ng = 2 (open circle), ng = 4 (full box).

| | PC | none |RLSG ng =2|RLSG ne¢ =4|RLSG ng =8|

A/Ao

s/so 0.78519 0.97316 0.98694 0.99368

0.99502 | 1.05004 | 0.99723 0.99987 0.99990

TABLE 1. Normalize disk area A/A and interface length s/so after one full rotation of
Zalesak’s disk

Employing the RLSG method with ng = 2 results in markedly improved results as
compared to using no correction method at all. The area of the disk is preserved better
than in the case of the particle correction method. However, this is due to two errors
canceling each other: one at the sharp corners leading to an area decrease and the other
at the top of the notch leading to an area increase, see Fig. 3. This cancelation of errors
results in an area decrease of only 0.28%. The total length of the interface, on the other
hand decreases by about 2.7 %.

Successively refining the G-grid continues to improve these results. The interface shape
obtained with ng = 4 is already superior to that of the particle correction method. For
ng = 8 almost no difference between the exact solution and the numerical result can be



On mass conservation and desingularization of the LSVS method 21

0.5 ; 0.5 ;
0 0
-0.5 1 -0.5 |
0 0.5 1 0 0.5 1

FIGURE 5. Vortex sheet roll-up interface shape at ¢ = 3, no correction method (left) and RLSG
method ng = 8.

discerned, see Fig. 3, and 99.99% of the disk’s area and 99.4 % of the interface length is
preserved, see Tab. 1.

The results of this test case indicate, that the RLSG method with ng > 4 performs
comparable, if not superior, to the particle correction method with respect to area preser-
vation, while maintaining symmetry and avoiding any fluctuations introduced by the
correction step of the particle correction method.

3.2. Vortex sheet roll-up

Pure vortex sheets represent a special class of phase interfaces in that no surface tension
forces exist. Thus, they constitute an ill posed problem, since linear theory predicts
that the growth rate of a sinusoidal disturbance of wave number k is proportional to
k. Consequently, as pointed out by Moore (1979), a vortex sheet develops a singularity
at some critical time t., typically a discontinuity in curvature. In order to calculate
the behavior of the vortex sheet beyond t., some form of desingularization has to be
introduced, either by replacing the exact equations by desingularized versions, see for
example the vortex blob method (Krasny 1986), or by adding physical effects like surface
tension forces (Pullin 1982) or viscosity (Tryggvason et al. 1991).

In the case of the LSVS method, desingularization is two-fold. For one, all transport
equations are solved by a finite difference scheme on an underlying numerical grid. Thus,
all derivatives of finite quantities are inherently limited by the employed grid spacing.
Secondly, the delta functions in Eqs. (2.6) and (2.7) are approximated by the numerical
delta function d. of finite width e, Eq. (2.8). Thus, vorticity is not solely located at
the interface, but spread out to neighboring grid nodes. To some extent, this crudely
mimics the effect of viscosity (Tryggvason et al. 1991), since the shear layer is not of zero
thickness as in the inviscid case, but rather has a finite, constant thickness proportional
to €. However, if the extend of the desingularization is reduced, i.e. the grid is refined
and ¢ reduced, the LSVS method should be able to reproduce the Moore singularity at
te.

Furthermore, after the critical time, the vortex sheet rolls up in the inner core region in
such a way, that adjacent interfaces are tightly packed, see Fig. 5, requiring high fidelity
level set solution algorithms, i.e. level set correction methods.

In the following, first, the performance of the different level set correction methods
beyond the critical time is analyzed. Then, the LSVS method in the non-desingularized
limit is verified. Finally, the influence of varying the shear layer thickness is ascertained.
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FIGURE 6. Inner core region of the vortex sheet roll-up at ¢ = 3. From left to right: no
correction method, particle correction method, RLSG method with ng = 2, ng = 4, and
ng = 8.

3.2.1. Influence of level set correction methods
The vortex sheet roll-up is initiated by placing a sinusoidal interface

. (2 .2
G(z,t =0) =y — Agsin (EW [z’ — Apsin Eﬂx]) , (3.2)

with amplitude 4y = 0.01, B =1, and vortex sheet strength

*

Ui

4r A 2 21 A or 1%
\/l+ T Ocoslx+2[ il Ocos—wx]

nvs(z,t =0) = (3.3)

B B B B

with n* = —1, into a box of size B x B, resolved by an 7n-grid of 256 x 256 equidis-
tant Cartesian grid cells. Periodic boundary conditions are employed at the left and
right boundaries, and no-slip walls are used at the bottom and top boundaries, with the
tangential wall velocity set to u,, = F0.5. In all cases, ¢ = 16/256. Simulations were
performed using no correction method at all, the particle correction method, and the
RLSG method with ng = 2, 4, and 8.

Figure 5 shows the interface shape at ¢ = 3 obtained by using no correction method
and the RLSG method with ng = 8. As discussed in Herrmann (2004a), numerical
diffusion and the incorrect merging of characteristics leads to significantly less turns in
the inner core region where these errors are dominant, when using no correction method
as compared to both the results by Krasny (1986) and those obtained using a correction
method.

To evaluate the performance of the RLSG method as compared to the particle correc-
tion method, Fig. 6 shows a zoom of the inner core region of the vortex sheet at ¢t = 3.
Figure 7 depicts the interface curvature x along the normalized interface arc length s/L,
and Fig. 8 shows the tangential derivative of the interface curvature, sk i.e. the term
proportional to the surface tension term in Eq. (2.2). Looking first at the interface
shape, using any of the two correction methods yields very similar good results as com-
pared to using no correction method at all. On close inspection, however, it can be seen
that the RLSG method with ng = 2 and ng = 4 generates slightly less respectively
more turns than the particle correction method. Using the RLSG method with ng = 8
leads to results that are virtually undistinguishable from those obtained with ng = 4,
demonstrating grid convergence with respect to the G-grid.

The analysis of the interface curvature distribution reveals the drawbacks of the par-
ticle correction method. As discussed in Herrmann (2004a) and Coyajee et al. (2004),
a correction method that corrects the level set scalar locally, like the particle correction
method, will introduce fluctuations in the higher derivatives of G. As can be seen in Fig.
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FIGURE 7. Interface curvature x for vortex sheet roll-up at ¢ = 3, particle correction method
(top left) (Herrmann 2004a), RLSG method with ng = 2 (top right), n¢ = 4 (bottom left), and
ng = 8 (bottom right).
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Fi1GURE 8. Tangential curvature derivative Osk for vortex sheet roll-up at ¢ = 3, particle cor-

rection method (top left), RLSG method with ng = 2 (top right), ng = 4 (bottom left), and
ng = 8 (bottom right).

8 this would lead to unacceptable fluctuations in the surface tension term, making any
local correction method unapplicable within the context of the LSVS method. The de-
localization method developed in Coyajee et al. (2004) could help alleviate this problem
and will thus be further analyzed in the future. The RLSG method, on the other hand,
delivers smooth, virtually non-fluctuating distributions of both the curvature, and more
importantly, the tangential curvature derivative, making it ideal within the context of
the LSVS method. The variations in both « and 9sk are due to the fact that the vor-
tex sheet is slightly elongated, see Fig. 5, resulting in the shown distributions. Also, the
results for ng = 4 and ng = 8 show virtually identical distributions of both x and 9k
demonstrating again, grid convergence, even for these higher derivatives of G.

3.2.2. Moore singularity

The initial conditions used to recover the Moore singularity are those proposed by
Meiron et al. (1982). Initially, the vortex sheet is flat and located at y = 0 inside a
box of size [0,27] x [—7,n] with a sinusoidal disturbance of the vortex sheet strength,
71 =14 acosz and a = 0.125. With these initial conditions, the predicted critical time
is t. ~ 2.84 (Shelley 1992). Three calculations were performed, successively reducing the
desingularization, i.e. the grid spacing and the spreading parameter, from Az = 27/256
with e = 16/256, to Az = 27/512 with € = 8/256, and to Az = 27/1536 with € = 6/256.
Since the amplitude of the disturbance throughout the simulations remains relatively
small, no level set correction method has been used.
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FIGURE 9. Vortex sheet curvature (left) and curvature derivative (right) at times close to the
critical time, ¢t = 3.0 (left) and ¢t = 3.2 (right) for e = 16/256 (dashed), e = 8/256 (dotted), and
€ = 6/256 (solid).
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FIGURE 10. Estimation of the critical time ¢..

Figure 9 shows the distribution of curvature and curvature derivative, 9k, along the
normalized interface arc length s/L at two different times close to the critical time t.
Both the curvature and the curvature derivative distributions clearly show the onset of
the Moore singularity at s/L = 0.5. Decreasing the desingularization obviously increases
the curvature derivative at any given time. However, the ¢ = 6/256 case shows some
small fluctuations of 0;k not present in the other two cases. This is due to the fact that
a decrease of ¢ increases the growth rate of higher wave number fluctuations (Krasny
1986). The initial amplitudes of these higher wave number disturbances are due to the
numerical error associated with the employed numerical grid. Obviously, the 1536 x 1536
grid is barely sufficient to delay the growth of these higher wave number disturbances.
A further reduction of £ would thus require a substantially finer grid. Furthermore, at
t = 3.2 the J;x distribution for both € = 8/256 and & = 6/256 exhibits two local minima
directly adjacent to the central maximum. This behavior is consistent with that reported
by Shelley (1992).

To determine ¢, in the non-desingularized limit, the critical time for each of the three
calculations is estimated using a procedure proposed by Shelley (1992). The values of
1/0sk at s/L = 0.5 between ¢ = 1.0 and ¢t = 3.2 are extrapolated to zero using a
third order polynomial that provides an excellent fit to the data points. The resulting
critical times are shown in Fig. 10 as a function of the spreading parameter £. A linear
extrapolation is then used to estimate t. for ¢ — 0 and Az — 0, yielding a critical
time of ¢, = 3.001. Although this time is slightly larger than the critical time predicted
by theory, it is in excellent agreement with the results of Shelley (Shelley 1992), who
estimates . = 3.015 using a high accuracy point-vortex method.
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3.3. Kelvin-Helmholtz instability in the linear regime

A velocity shear between two fluids can give rise to the so-called Kelvin-Helmholtz insta-
bility, if the velocity profile between the two fluids exhibits an inflection point (Rayleigh
1880). This phenomenon was first studied by Helmholtz (1868) and Kelvin (1871) in the
inviscid limit for a shear layer of zero thickness, i.e. a velocity discontinuity. For fluids of
equal density, the growth rate w in the linear regime for the unbounded case is

w(We) = g\” - \27\7_12' (3.4)

The case of a shear layer of finite size and constant shear was subsequently analyzed
by Rayleigh (1880). In the inviscid and We = oo limit, the growth rate w in the linear
regime becomes

k [e=2kd 4 2kd —1
w(d) =/ ———— -1, 3.5
(@) 2\/ Gy (35)
with d the shear layer thickness defined as
n
d=—" . 3.6
(O]9} (0

Although numerical solutions are possible for arbitrary shear layer velocity profiles (Michalke
1964; Yecko et al. 2002), comparisons will be limited to the above analytical solutions
for validation purposes.

The initial conditions for the level set scalar G are given by Eq. (3.2) with A9 = 1-107°
and B = 1. The initial vortex sheet strength distribution is calculated from

_ _ W(We) _ * *
n(wat - 0) - ’UJ(WG — OO) (Uvs(-’li;t - 0) n ) +n, (37)
with n* = —1 and nys given by Eq. (3.3). Periodic boundary conditions are employed

at the left and right domain boundary, whereas slip conditions are used at the lower
and upper boundary. This in theory constitutes a bounded shear layer flow. However,
the upper and lower boundaries are placed sufficiently far away from the interface, as to
have no further influence on the presented results, thus allowing comparisons with the
theoretical results of the unbounded case. All simulations are performed in a B x 2B
box employing an n-grid of 256 x 512 equidistant Cartesian grid cells. Due to the small
amplitude of the disturbance, no level set correction method is required.
Figure 11 compares the growth rates w,

1 [k

w=—
tl 0

w(t)dt, ¢ =0.5, (3.8)
to the results obtained by linear theory for varying We, Eq. (3.4). Table 2 lists the re-
spective numerical values. For the lowest value of the spreading parameter, ¢ = 4/256,
method My, Eq. (2.6), slightly under-predicts the linear growth rate by about 3%. This
is due to the introduction of the numerical spreading function in Eq. (2.6) and the con-
sequently theoretically reduced linear growth rate, cp. Eq. (3.5). Method M3, Eq. (2.7),
on the other hand marginally over-predicts the linear growth rate for ¢ = 4/256, but
gives slightly lower w than Ms for larger €. The reason for this behavior is not directly
apparent, but it is most likely due to the lack of a consistent level set based interpola-
tion step to calculate the vortex sheet induced velocity u, Eq. (2.9), (Herrmann 2004a).
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F1GURE 11. Growth rate w of the Kelvin-Helmholtz instability in the linear regime, method Mo
€ = 4/256 (circle, left), Ms & = 4/256 (box, left), M, ¢ = 8/256 (circle, right), M3 ¢ = 8/256
(box, right), M2 e = 16/256 (full triangle, right), M3 £ = 16/256 (open triangleright), and
linear theory (lines).

| Method / We || 13 | 20 | 50 | 100 | 1000 | oo |

Theory 0.5741.915|2.718 | 2.938 | 3.122 | 3.142
Moy, e =4/256 |0.552]1.856|2.638 |2.852|3.021 | 3.034
Ms, e =4/256 |0.726 |1.991 | 2.756 | 2.965 | 3.129 | 3.140
Mo, e =8/256 |0.426 |1.744 |2.505 |2.717 | 2.886 | 2.899
Ms, e =8/256 |0.429]1.703 | 2.472 | 2.682 | 2.849 | 2.863
Moy, £ =16/256|0.329 | 1.568 | 2.316 | 2.521 | 2.685 | 2.698
Mg, e =16/256 || 0.267 | 1.569 | 2.332 | 2.539 | 2.703 | 2.717

TABLE 2. Linear growth rates w of the Kelvin-Helmholtz instability for varying £ and We,
256 x 512 grid, methods M and Ms.

Altogether, increasing € results in a consistent reduction of the growth rate for both Mo
and ./\/l3.

In order to further analyze this behavior, Fig. 12 depicts the growth rate w as a
function of the shear layer thickness d = ¢ in the limit of We = 0o as compared to the
analytical solutions, Eqgs. (3.4) and (3.5). The corresponding numerical values are shown
in Tab. 3. While the qualitative behavior of the simulations and the theory for a linear
velocity profile is similar, both My and M3 exhibit overall larger growth rates and hence
reach their neutrally stable solution at a larger shear layer thickness of d = € & 0.8. This
quantitative deviation is due to the different velocity profile of Eq. (3.5) and the LSVS
method. The former assumes a linear profile, whereas the latter employs a rather complex
profile due to the schemes outlined in section 2. In principle, it seems possible to change
the velocity profile used in the LSVS method by modifying the numerical delta function
0, Eq. (2.8). A detailed comparison with the viscous linear theory by Yecko et al. (2002)
and Li et al. (2004) will reveal the necessary modifications to Eq. (2.8).
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F1GURE 12. Growth rate w of the Kelvin-Helmholtz instability in the linear regime as function
of the shear layer thickness d = €. Theory for linear velocity profile ( ), theory for velocity
discontinuity (- — -), methods M3 (circle) and M3 (box).

| Method / d = ¢ | 4/256 | 8/256 | 16/256 | 32/256 | 64/256 | 128/256 | 160/256 | 192/256 |

Theory Eq. (3.4) || 3.142 | 3.142 | 3.142 | 3.142 | 3.142 3.142 3.142 3.142
Theory Eq. (3.5) || 2.939 | 2.742 | 2.361 | 1.609 | stable | stable | stable | stable
Mo 3.034 | 2.899 | 2.698 | 2.281 | 1.489 | 0.380 0.133 0.032
M3 3.140 | 2.863 | 2.717 | 2.224 | 1.342 0.320 0.110 0.026

TABLE 3. Linear growth rates w of the Kelvin-Helmholtz instability for varying ¢ and We = co.

4. Conclusions and future work

A method has been presented that addresses the problem of mass conservation inherent
in the level set approach. This so-called Refined Level Set Grid (RLSG) method achieves
mass conservation results comparable to other level set correction methods, like for ex-
ample the particle correction method, but demonstrates clearly superior performance
with respect to the convergence of higher derivatives of the level set scalar. In particular
the convergence of the interface curvature derivative is crucial within the context of the
LSVS method and has been demonstrated in the case of vortex sheet roll-up.

Although the LSVS method has been derived for the limit of inviscid fluids, the nu-
merical implementation necessitates the introduction of a finite shear layer thickness,
representing an additional level of desingularization. The non-desingularized, inviscid
limit of the Moore singularity can however be recovered, if the the extend of the desin-
gularization is successively reduced.

The influence of the desingularization introduced by the finite shear layer thickness has
been further analyzed in the case of the Kelvin-Helmholtz instability in the linear regime.
It was found that the finite, constant shear layer thickness qualitatively mimicks certain
features of viscous fluids. However, only a detailed comparison to the fully viscous theory
by Yecko et al. (2002) and Li et al. (2004), planned for the future, will help quantify this
effect and point to possible enhancements of the LSVS method.



28 M. Herrmann

Acknowledgments
The support of the German Research Foundation (DFG) is gratefully acknowledged.

REFERENCES

ADALSTEINSSON, D. & SETHIAN, J. A. 1999 The fast construction of extension velocities
in level set methods. J. Comput. Phys. 148, 2-22.

BOURLIOUX, A. 1995 A coupled level-set volume-of-fluid algorithm for tracking material
interfaces. In Sizth International Symposium on Computational Fluid Dynamics, ,
vol. IV, pp. 15-22. Lake Tahoe, NV.

BRrACKBILL, J. U., KOoTHE, D. B. & RupPEL, H. M. 1988 FLIP: A low dissipation,
particle-in-cell method for fluid flow. Comput. Phys. Commun. 48, 25-38.

CHRISTIANSEN, J. P. 1973 Numerical simulation of hydrodynamics by the method of
point vortices. J. Comput. Phys. 13, 363—-379.

CorTET, G.-H. & KoumMouTsakos, P. D. 2000 Vortexr Methods. Cambridge: Cam-
bridge University Press.

COYAIJEE, E., BOERSMA, J. B. & HERRMANN, M. 2004 Effects of inertia on trajectories
of drops in liquid flows. In Proceedings of the 2004 Summer Program. Stanford, CA:
Center for Turbulence Research.

ENRIGHT, D., FEDKIW, R., FERZIGER, J. & MITCHELL, I. 2002 A hybrid particle level
set method for improved interface capturing. J. Comput. Phys. 183, 83-116.

GUEYFFIER, D., L1, J., NADIM, A., SCARDOVELLI, S. & ZALESKI, S. 1999 Volume of
Fluid interface tracking with smoothed surface stress methods for three-dimensional
flows. J. Comput. Phys. 152, 423-456.

HaMm, F. & Young, Y.-N. 2003 A cartesian adaptive level set method for two-phase
flows. In Annual Research Briefs-2003, pp. 227-237. Stanford, CA: Center for Tur-
bulence Research.

HeLMHOLTZ, H. V. 1868 On discontinuous movements of fluids. Philos. Mag. 36, 337—
346.

HERRMANN, M. 2002 An Eulerian level-Set/Vortex-sheet method for two-phase interface
dynamics. In Annual Research Briefs-2002 (ed. P. Bradshaw), pp. 103-114. Stanford,
CA: Center for Turbulence Research.

HERRMANN, M. 2003a A domain decomposition parallelization of the Fast Marching
Method. In Annual Research Briefs-2003, pp. 213-226. Stanford, CA: Center for
Turbulence Research.

HERRMANN, M. 2003b Modeling primary brekaup: A three-dimensional Eulerian level
set / vortex sheet method for two-phase interface dynamics. In Annual Research
Briefs-2003, pp. 185-196. Stanford, CA: Center for Turbulence Research.

HERRMANN, M. 2004a A Eulerian level set/vortex sheet method for two-phase interface
dynamics. Accepted for publication in J. Comput. Phys.

HERRMANN, M. 2004b A level set/vortex sheet method for modeling phase interface
dynamics during primary breakup. In ILASS Americas 2004, 17th Annual Confer-
ence on Liquid Atomization and Spray Systems, NIST Special Publication 1016 (ed.
C. Presser & B. Helenbrook).

JIANG, G.-S. & PENG, D. 2000 Weighted ENO schemes for Hamilton-Jacobi equations.
SIAM J. Sci. Comput. 21 (6), 2126-2143.

KELVIN, L. 1871 Hydrokinetic solutions and observations. Philos. Mag. 42, 362-377.



On mass conservation and desingularization of the LSVS method 29

KotHE, D. B. & RIDER, W. J. 1995 Comments on modelling interfacial flows with
Volume-of-Fluid methods. Tech. Rep. LA-UR-3384. Los Alamos National Labora-
tory.

KRASNY, R. 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys.
65, 292-313.

Li, J., LorEz-PAGES, E., YECKO, P. & ZALESKI, S. 2004 Droplet formation in sheared
liquid-gas layers. Submitted to Theor. Comput. Fluid Dyn.

MEIRON, D. I., BAKER, G. R. & ORSzAG, S. A. 1982 Analytic structure of vortex
sheet dynamics. Part 1. Kelvin-Helmholtz instability. J. Fluid Mech. 114, 283-298.

MICHALKE, A. 1964 On the inviscid instability of the hyperbolic-tangent velocity profile.
J. Fluid Mech. 19, 543-556.

MOoORE, D. W. 1979 The spontaneous appearance of a singularity in the shape of an
evolving vortex sheet. Proc. R. Soc. Lond. A 365, 105-119.

Non, W. F. & WooDWARD, P. 1976 SLIC (Simple Line Interface Calculation). In Lec-
ture Notes in Physics, Vol. 59, Proceedings of the Fifth International Conference on
Numerical Methods in Fluid Dynamics (ed. A. 1. V. D. Vooren & P. J. Zandenber-
gen), pp- 330-340. Berlin: Springer.

OBERLACK, M., WENZzEL, H. & PETERS, N. 2001 On symmetries and averaging of the
G-equation for premixed combustion. Combust. Theory Modelling 5, 363—383.
OSHER, S. & SETHIAN, J. A. 1988 Fronts propagating with curvature-dependent speed:

Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49.

PENG, D., MERRIMAN, B., OSHER, S., ZHao, H. & Kang, M. 1999 A PDE-based
fast local level set method. J. Comput. Phys. 155, 410-438.

PEesSkIN, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25,
220-252.

VAN DER PuiL, S. P., SEcAL, A., VUIK, C. & WESSELING, P. 2004 A mass-conserving
level-set method for modeling multi-phase flows. Submitted to Int. J. Numer. Meth.
Fluids.

PrrscH, H. 2002 A G-equation formulation for large-eddy simulation of premixed tur-
bulent combustion. In Annual Research Briefs-2002 (ed. P. Bradshaw), pp. 3-14.
Stanford, CA: Center for Turbulence Research.

Pozrikipis, C. 2000 Theoretical and computational aspects of the self-induced motion
of three-dimensional vortex sheets. J. Fluid Mech. 425, 335-366.

Purrin, D. 1. 1982 Numerical studies of surface-tension effects in nonlinear Kelvin-
Helmholtz and Rayleigh-Taylor instability. J. Fluid Mech. 119, 507-532.

RAYLEIGH, L. 1880 On the stability, or instability, of certain fluid motions. Proc. London
Math. Soc. 11, 57-70.

RIDER, W. J. & KOTHE, D. B. 1995 Stretching and tearing interface tracking methods.
Tech. Rep.. Los Alamos National Laboratory, ATAA Paper 95-1717.

SETHIAN, J. A. 1996 A fast marching level set method for monotonically advancing
fronts. Proc. Natl. Acad. Sci. USA 93, 1591-1595.

SHELLEY, M. J. 1992 A study of singularity formation in vortex-sheet motion by a
spectrally accurate vortex method. J. Fluid Mech. 244, 493-526.

SHU, C.-W. & OSHER, S. 1989 Efficient implementation of essentially non-oscillatory
shock-capturing schemes. J. Comput. Phys. 77, 439-471.

SussMAN, M. & FATEMI, E. 1999 An efficient, interface-preserving level set redistancing



30 M. Herrmann

algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci.
Comput. 20 (4), 1165-1191.

SuUssSMAN, M., SMEREKA, P. & OSHER, S. 1994 A level set method for computing
solutions to incompressible two-phase flow. J. Comput. Phys. 119, 146.

TRYGGVASON, G., DaaM, W. J. A. & SBEIH, K. 1991 Fine structure of vortex sheet
rollup by viscous and inviscid simulation. J. Fluids Eng. 113, 31-36.

UNVERDI, S. O. & TRYGGVASON, G. 1992 A front-tracking method for viscous, incom-
pressible, multi-fluid flows. J. Comput. Phys. 100, 25-37.

YECKO, P., ZALESKI, S. & FuLLANA, J.-M. 2002 Viscous modes in two-phase mixing
layers. Phys. Fluids 14 (12), 4115-4122.

ZALESAK, S. T. 1979 Fully multidimensional flux-corrected transport algorithms for
fluids. J. Comput. Phys. 31, 335-362.



Center for Turbulence Research 31
Annual Research Briefs 200/

Accurate and efficient immersed-boundary
interpolations for viscous flows

By S. Kang, G. Iaccarino AND P. Moin

1. Motivation and background

The Immersed Boundary (IB) method is a technique for solving flow problems with
irregular boundaries using a simple Cartesian grid solver. Specifically, the computational
grid does not conform to all the boundaries of the domain and the numerical algorithm in
the vicinity of these immersed surfaces is modified to enforce the desired boundary condi-
tions. This greatly reduces the difficulties of generating meshes for complex boundaries.
In addition, the IB method has the potential of high efficiency as the computational cost
per grid cell is generally lower than that of general-purpose unstructured (body fitted)
grid solvers.

There are numerous variants of the IB method, mainly in relation to the specific
treatment of the computational cells crossing the immersed surfaces. Two major family
of approaches can be distinguished: (i) based on strict finite volume discretization based
on the cells cut by the IB (cut-cell approach) and (ii) based on forcing terms or solution
interpolation in the vicinity of the IB.

The objective of the present study is to further develop an IB method based on forcing
which has sufficient accuracy for Large Eddy Simulations (LES) at high Reynolds num-
bers with minimal increase in computational cost with respect to the simple, underlying
Cartesian grid solver. The starting point for the present IB method is the interpolation
method described in Fadlun et al. (2000). In addition to its simplicity, it has several
advantages. The velocity boundary condition is enforced with implicit forcing, there is
no severe limit on the time step, and the velocity components from the regions across the
immersed boundary are decoupled. In the present study, revisions to this approach are
introduced with the objective of increasing the accuracy and consistency of this method.
In addition we analyze the practical importance of strict mass conservation.

In the next section, a general description of the numerical method used is given. The
analysis of a various interpolation methods for the velocity field near the IB are presented
in section 3. In addition, the issues of mass conservation and pressure accuracy are
addressed. Results from numerical tests for laminar and turbulent flows are shown in
section 4.

2. Numerical Method

The Navier-Stokes equations for an incompressible fluid are solved on a Cartesian
grid using a staggered arrangement of the variables. A variant of the fractional step
method (Kim & Moin 1985) is employed. The Crank-Nicholson scheme and the third-
order Runge-Kutta scheme for the discretization of the diffusive and convective terms are
used, respectively. An approximate ADI scheme is used to solve the momentum equation;
to solve the Poisson equation for the pseudo-pressure either a direct method using the
fast Fourier transform (FFT) or a multigrid method is used. In general, algorithms are
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FIGURE 1. Configuration of the immersed boundary, grid and nodes in the linear interpolation
method: , immersed boundarys; , grid; —», velocity node.

parallelized using MPI, and the parallel tridiagonal matrix solver developed by Mattor
et al. (1995) is used.

3. Interpolation methods at the immersed surfaces

In the original approach of Fadlun et al. (2000) the velocity components at the first
grid point off the IB are determined using a linear interpolation formula rather than
the discretized Navier-Stokes equation. The method is equivalent to assuming a one-
dimensional linear velocity profile near the boundary. As consequence of the interpolation
the velocity components are independent of each other and each component is determined
by a separate interpolation. In the present study, four different interpolation methods
have been considered:

e Linear interpolation method (LIM)

e Revised linear interpolation method (RLIM)

e Quadratic interpolation method (QIM)

e Quadratic+momentum interpolation method(QMIM)

3.1. Linear interpolation method

Fig. 1 shows two IB configurations commonly found in practical problems. In Fig. 1 (a),
since the IB is approximately parallel to grid lines, a linear interpolation with urg, u.
and us is easily formed along the x5 coordinate. In Fig. 1 (b), there are two velocity
components (u; and us) nearest in the horizontal and vertical directions to u.. Then, a
triangle is constructed by using two adjacent velocity nodes and a point on the IB (usp)
surrounding u.. Then, a linear interpolation stencil is built using the information available
at the vertices of the triangle. The resulting interpolation formula has the following form:

uf e = wiaufy +wigufy +wipud g, (3.1)
where subscripts 1 and 2 denote adjacent velocity nodes in the z; and z» directions, and
subscript IB denotes the point on the IB which is the boundary-normal projection of
the velocity node c. Superscript k& denotes the next time step, and w; is an interpolation
coefficient determined by the geometric configuration. Extending this method to a three-
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dimensional geometry is straightforward. In the framework of the fractional step method
the linear interpolation can be applied to either d; . or Au; . = 4f, — uf’;l.
Assuming a local coordinate system whose center is located at the velocity node ¢, we

can restate the linear interpolation method as:

k _ ok k k
ui (T1,%2) = @131 + a7 ,%2 + ug, (3.2)
uf = ¥, p at immersed boundary,

where a; 1 and a; > are coeflicients determined by the geometry of the local IB and velocity
components.

When comparing Eq. (3.1) with the discretized momentum equation it can be shown
that the linear interpolation method does not explicitly account for effects of the some
of the terms, i.e. the pressure forcing, the temporal variation, etc. It can be argued
that through the use of the two velocity components, u; 1 and u; 2 (determined by the
discretized momentum equation), the effects of these terms are indirectly included.

A notable feature of the linear interpolation method (Eq. (3.1)) is that there is no
explicit contribution from the velocity field at the previous time step. Numerical errors,
once generated, are accumulated and/or transfered to other regions by advection and
diffusion. A problem we encountered in numerical experiments is the occurrence of ab-
normal pressure fluctuations around the volume cells crossed by the IB. This effect is
equivalent to the so-called “checker-board effect” observed in a non-staggered grid sys-
tem where the solution of the momentum equation does not reflect the local pressure
gradient.

3.2. Rewised linear interpolation method

It is possible to derive an interpolation formula based on both @#* and Au. After some
manipulations and introducing a blending factor 1 we obtain:

g p g Lk
Uj e = Wi1Us 1 + Wi2Uy s + Wi 1BU; 1B
k-1 k-1 k-1 k-1
+7 (Uz T Wi Uy T Wi2Up g T wi,IB“z',IB) ) (3.3)

The effect of the local pressure gradient can be accounted for by using:

ak o~k sk sk
Us . = Wi U1 + Wiply o + Wi 1BU; 1B

0 (Uf_l —wiauy —wipuiy' - wi,IBUf,?}s)
8pk71 6pk71 8pk71 8pk71
— (7% + pr)At ( —Wi1 (| T Wi2 (| —W,IB :
i 8xz 1 833'1 9 833'1 IB

(3.4)

where the coefficient v, and p are related to the time integration scheme. It is easy
to prove that the numerical accuracy of Eq. (3.4) is the same as the original linear
interpolation formula - second order in space. Also, note that what is interpolated is
a¥ — w7 4 (9 + pr) Atdp*F=1 /x; when i = 1. Coupling between neighboring pressure
points is then considered with this “simulated” momentum equation. This approach is
referred to in the following as Revised Linear Interpolation Method (RLIM).

In practice, computing Op*~1/0z; at 1, 2 and c locations is straightforward since these
points are existing velocity nodes at the cell faces, but interpolation is necessary to
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FIGURE 2. Points participating in interpolation of the pressure gradient on the IB.
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FIGURE 3. Configuration of the immersed boundary, grid and nodes in the quadratic
interpolation method: , immersed boundary; , grid; —», velocity node.

compute dp*¥~1/dx; at the IB location. Applying linear interpolation using dp*F—!/dz;
at 1, 2 and c is not appropriate in this case. So, an additional point near ¢ is used in
interpolation.

Fig. 2 shows a schematic representation of the stencil used for the pressure interpola-
tion. This form of extrapolation has second order accuracy but becomes unstable when
the ¢ and IB points are close to each other. It is used only when 7 is larger than user-
defined n.;;. Other alternatives to dp*~1/0z; at IB are OpF!/0z; at c¢ location and
Op*~1/dx; = 0. The former produces a smaller error in the present numerical experi-
ments and it is used when 7 is smaller than 7..;. This approximation produces a first
order error term which is found not to affect the accuracy as shown in §4.1. For the
problems tested in the present study, 7..;;=0.4 is used.

3.3. Quadratic interpolation method
The quadratic interpolation formula considered in the present study is:
ﬁf(a:l, Z2) = aﬁlx% + bf’lxl + af’za:g + bf’zxg + ﬂﬁc, (3.5)

where the origin of the local coordinate system is located at the position of ;. which is
determined by the interpolation formula.
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FIGURE 4. Configuration of the immersed boundary, grid and nodes in the
quadratic+momentum interpolation method: , immersed boundary; , grid; —»,
velocity node.

Fig. 3 shows two IB configurations of interest. The number of velocity points needed
to construct the quadratic formula is six (including ;). We can select @; . and the four
surrounding velocity points. In addition, another point (subscript o) is necessary to define
the interpolation stencil. In Fig. 3 (a), we choose the additional point to be the third
velocity point away from the IB. Then, the points to the the left and right of 4; . are
ignored and a quadratic formula is generated using the four points along the coordinate
normal to the IB line. In Fig. 3 (b), we choose the additional point as the center of four
additional velocity nodes near the IB line.

With this quadratic interpolation formula, it is possible for the local velocity to have
a non-linear profile. Also, only the spatial accuracy is increased and temporal behavior
remains the same of the LIM.

3.4. Quadratic+momentum interpolation method

In the quadratic interpolation formula described above, there are five unknowns (includ-
ing ﬂf,c) all determined using velocities at fluid points computed through the solution
of the governing equations. It is possible to follow another approach which reduces the
stencil required to close the interpolation formula. In Fig. 4 the four adjacent velocity
points are used to define four equations to determine the coefficients. The fifth relation is
obtained from enforcing the momentum equations with a second order finite difference.
The pressure gradient at a velocity node can be easily computed in the present staggered
grid system although if some of the pressure points used may be in the boundary region
(shaded region in Fig. 4). Interpolation coefficients are determined dynamically depend-
ing on the spatial and temporal flow field rather than having fixed values depending on
geometry. The quadratic+momentum interpolation method (QMIM) has similarity to
the cut-cell approach as a formal discretization of the momentum equation that accounts
for the physical location of the IB is used.

The QMIM is computationally more complex than the LIM due to explicit evaluation
of the convective and viscous terms. The overhead is about 10~15% of the original
computation time for the two-dimensional test cases presented afterward.
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3.5. Enforcing mass conservation

The interpolation methods considered focus on the velocity and the momentum equation.
There is another issue that plays a crucial role in practical calculations: mass conserva-
tion.

In IB approaches, the computational domain is divided into fluid regions where solu-
tions to the Navier-Stokes equations are desired, and solid regions (e.g. shaded area in
Fig. 1) where no solution is needed. The immersed surface separates these two regions. In
Fadlun et al. (2000), the interpolation method determines the velocity components near
the IB in the flow region. These components are not directly related to the velocity field
in the boundary region. But, the flow field in the fluid region is affected by the velocity
field in the solid region, since conservation of mass is satisfied for all the computational
cells regardless of the presence of the IB. Mass conservation is not satisfied for the virtual
cells obtained from cutting the fluid cells with the IB, and the subsequent errors may
not be negligible.

To address mass conservation, the basic idea is to build new computational cells formed
by the IB and existing cell faces, and to completely decouple the solid region from the
fluid region. that the velocity. This is closely related to the finite volume method for an
unstructured polyhedral mesh, and it is similar to the mass forcing concept by Kim et
al. (2001) and cut-cell approaches (Ye et al. (1999); Kirkpatrick et al. (2003), among
others. The present IB method, therefore, uses an efficient interpolation method for the
velocity components and a modified finite volume operator for mass conservation at the
immersed surfaces.

The finite volume discretization for the cut-cells introduces substantial complexity and,
moreover, the computational stencil requires the modification of the linear system solver
with potential negative impact on the efficiency of the code. An alternative approach
is to consider strict flux conservation only for the explicit terms in the discretization
stencil, leaving the implicit matrix unchanged (lagged correction). We refer to the former
approach as a strict conservation and the latter as approzrimate conservation.

3.6. Recovering the pressure field

The final aspect of the IB algorithm that we investigated is the compatibility between
the pressure field and the velocity field after any of the interpolation operators is used.

The basic idea is to perform an additional correction step (solving an extra Poisson
equation) after the standard pressure correction equation. This equation is obtained by
inserting the interpolated field at IB (obtained using any of the previously described
interpolation formula) in the momentum equation and taking its divergence.

The amount of correction is clearly different depending on the specific interpolation
method used. Our numerical experiments show that the QMIM interpolation requires
the least correction.

4. Numerical experiments: decaying vortex problem

The problem of decaying vortices in a periodic has been widely used as a benchmark
case to test the accuracy of numerical schemes, since it is an unsteady problem with an
analytic solution. The velocity and pressure fields are given as:

u(z,y,t) = —coswz sinmy 6_2”2t/Re, (4.1)

v(z,y,t) = sinwz cosmy e 2™ 1/ Re, (4.2)
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FIGURE 5. Grid and IB configuration for a decaying vortex problem: (a) IB lines aligned on
the grid lines; (b) IB lines inclined by 45° with respect to the grid lines.

p(z,y,t) = —0.25 (cos2mz + cos2my) e 4™ t/Re, (4.3)

In the present study, the exact flow field at ¢ = 0 is integrated in time. The Reynolds
number is set to 10. The computed flow field at ¢ = 0.2 is compared with the analytic
solution. The order of accuracy is investigated by computing the maximum (L) error
of the uy velocity and pressure fields with different grid sizes and time steps. A set of
grid sizes (Az=0.2, 0.1, 0.05 and 0.025) is chosen with a set of time steps (At=0.02,
0.01, 0.005 and 0.0025) as parameters. Both grid size and time step are halved to test
the order accuracy of the numerical scheme in space and time at once.

4.1. Linear interpolation methods

In this section, results with the linear interpolation methods introduced in §3.1-3.2 are

shown. The list of the tested cases are:
A. LIM for 4%, Eq. (3.1)

B. LIM for Auw, the delta form of Eq. (3.1)

C. Mixed LIM of A and B, Eq. (3.3)

D. RLIM, Eq. (3.4)

Tested IB geometries are the same as those used by Kim et al. (2001). In these ge-
ometries, grid lines in both directions and the IB lines meet at the edge points of the
grid cells, which maintains a constant configuration between the grid and the IB lines
independent of the number of grid points used. This problem setup allows for an effective
investigation on the accuracy of IB methods. Fig. 5 shows the test geometries with the
grid. Unless specified otherwise, the velocity field inside the IB geometry is solved and
the velocity field outside of the IB is set to zero.

Fig. 6 shows the maximum error in u; and p with different numbers of grid points.
When the IB line coincides with a grid line (square IB in Fig. 5 (a)), every interpolation
method produces an acceptable result. In this case, the maximum absolute value of V - u
is 1072 ~ 10~* without any special treatment for mass conservation. But, when the IB
line is inclined by 45° with respect to grid lines (rotated IB in Fig. 5 (b)), a large error
(~ 10?) in the pressure is found for the LIM and mixed LIM cases (not shown in the
figure). This indicates the occurrence of the local pressure build-up mentioned earlier.
Interestingly, the accuracy of the velocity field is still acceptable. The LIM for Aw and
the RLIM (Eq. (3.4)) show relatively reasonable pressure error. Between the LIM for
Awu and Eq. (3.4), the accuracy of the pressure is shown to be better for the latter,
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FIGURE 7. Maximum error in u; and p at t=0.2 with the linear interpolation schemes and the
pressure recovery scheme: , LIM for @&*; - — - =, LIM for Au; - - - -, mixed LIM; —— ,
RLIM. The symbol denotes the pressure.

which justifies the revision made by accounting for the local pressure gradient. Notably,
with the LIM for Auwu, the accuracy of the flow field is shown to decrease as the mesh
becomes finer. For these cases, 0¢/0n is not zero at the IB since the approximation to
the discretized Poisson equation is used. Thus, every velocity component is modified by
the velocity projection step including the boundary conditions. If Au at the IB is used as
the boundary condition at the next time step, pre-existing error will not be reduced and
will accumulate. The order of accuracy of the velocity field with the other interpolation
methods is shown to be second order in Fig. 6.

Fig. 7 shows the maximum error with the pressure recovery scheme introduced in § 3.6.
For the square IB, all error curves of the pressure collapse except for the LIM for Au.
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FIGURE 8. Maximum error in u1 and p at t=0.2 for the rotated IB case: (a) with the LIMs, the
pressure recovery scheme, and strict mass conservation: , LIM for @*; - - - -, LIM for
Awy; - - - -, mixed LIM; —— , RLIM (b) with the different settings for mass conservation with
the RLIM : , with the analytic initial and boundary conditions outside of the IB; - - - —|
with the analytic initial condition only; - - - - | with the approximate mass conservation; —— ,
with strict mass conservation. The symbol denotes the pressure.

For all cases, the pressure accuracy is increased. There is no noticeable change in the
accuracy of the velocity.

Fig. 8 (a) shows the maximum error with the pressure recovery scheme and strict mass
conservation introduced in §3.5 for the rotated IB case. The maximum value of |V - u|
is kept less than 107° at every time step. The accuracy of the velocity is not increased
except when the LIM for Aw is used. For this method, however, the deterioration of
the accuracy on finer meshes disappeared. With strict mass conservation, d¢/0n = 0
is satisfied at the IB, and there is no accumulation of error. The pressure accuracy is
slightly different for the different interpolation methods.

In order to further investigate the importance of mass conservation for the accuracy
of the present IB method, two additional simulations without the mass conservation
corrections of §3.5 are tested. In this case the flow fields on both sides of the IB are
coupled. The first set of results corresponds to the specification of the velocity and
pressure outside the computational domain based on the exact solution. In the second
calculation, on the other hand, the initial exact field (corresponding to ¢ = 0) is used
at all late times. Fig. 8 (b) shows the maximum error with the RLIM and the different
option for mass conservation described above. The results indicates that the flow field in
the flow region is affected to a large extent by the flow field in the boundary region if
mass conservation for the IB cells is not properly satisfied. Also, the difference between
the approximate and strict mass conservation cases is shown to be small.

To summarize, the IB method based on the LIM shows second order accuracy in time
and space. Among the linear interpolation variants, the RLIM (Eq. (3.4)) is found to
be most viable in the different IB geometries, even without strict mass conservation. In
order to reduce the error in the pressure, the pressure recovery scheme is found to be
more effective than strict mass conservation for the IB cells.
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FIGURE 9. Grid and IB configuration for a decaying vortex problem: (a) IB lines inclined by
45° with respect to the grid lines; (b) IB line of a circular shape.
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FIGURE 10. Maximum error in u1 and p at t=0.2 with the different interpolation methods:
, RLIM; - - — =, RLIM with the pressure recovery scheme; - - - -, QMIM; —— , QMIM with
the pressure recovery scheme. The symbol denotes the pressure.

4.2. Quadratic interpolation method

Quadratic interpolation method is here compared with the most accurate linear scheme
presented in the previous section: the RLIM. These interpolation methods are tested with
two IB geometries shown in Fig. 9. Fig. 9 (a) shows the rotated IB geometry identical to
that in Fig. 5 (b). Fig. 9 (b) shows a circular IB geometry. This last configuration is more
realistic as the intersection between the grid and the IB lines changes with the number
of grid points. Considering that the error of an IB method is a function of distance
between the fluid points and the IB, this configuration may cause some fluctuations in
the observed accuracy. Fig. 10 shows the maximum error in w; and p with and without
the pressure recovery scheme. In the rotated IB geometry, all cases show second order
accuracy for the velocity. In the circular IB geometry, the QMIM (in § 3.4) shows second
order accuracy for the velocity, while the RLIM (Eq. (3.4)) shows second order accuracy
only when the grid spacing Az is less than 0.05. The accuracy of the pressure is close
to first order for the QMIM. The RLIM produces a higher order of accuracy for the
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FIGURE 11. Maximum error in u; and p at t=0.2 with the different interpolation methods and
additional treatments in the circular IB: , no additional treatment; — — — — | pressure
recovery scheme; - - - -, strict mass conservation; —— , both treatments. The symbol denotes

the pressure.

pressure, but the magnitude of the pressure error is larger than the QMIM for the grid
spacings used.

With the pressure recovery scheme, velocity and pressure error is reduced in most
cases. Also, the result confirms that the pressure recovery scheme is effective in reducing
pressure error in a coarse mesh. It is noteworthy that the pressure recovery scheme seems
to be less helpful in combination with the QMIM than with the RLIM.

Fig. 11 shows the maximum error in u; and p with the different additional corrections
indicated before to investigate the combinations that are effective. A noticeable enhance-
ment is observed when using strict mass conservation, but its effect is much smaller than
that of using the pressure recovery scheme or different interpolation method. Considering
the large amount of computational time used for strict mass conservation, it does not
seem to be cost-effective for the cases tested.

In summary, the QMIM scheme is observed to be more viable than the other inter-
polation methods in a practical IB configuration. One weakness it showed is the lower
order of accuracy in the pressure than the RLIM.

4.3. Comparison of instantaneous flow fields

As shown in the previous sections, all the interpolation methods considered in the present
study show acceptable accuracy of the velocity and pressure, but some methods may
result in spurious local pressure oscillations. Fig. 12 shows the instantaneous pressure
contours obtained when using the LIM for 4* (Eq. (3.1)), revised LIM (Eq. (3.4)), and
QMIM scheme (§ 3.4) for the circular IB geometry. The pressure recovery scheme is not
used for these cases. A grid spacing of Az=0.1 is used and the grid lines are shown in
the figures. Large pressure oscillations and build-up at the cells crossed by the IB are
clearly visible in the case of the LIM for 4*. Much smaller errors are found in the pressure
contours from the RLIM case; the results obtained with the QMIM are clean with no
distortions.

Fig. 13 shows the instantaneous pressure contours from the different interpolation
methods with the pressure recovery scheme. The pressure contours for all cases are now



42 S. Kang, G. Iaccarino & P. Moin

FIGURE 12. Instantaneous pressure contours computed using the different interpolation
methods without the pressure recovery scheme: (a) LIM for 4*; (b) RLIM; (c) QMIM.

FIGURE 13. Instantaneous pressure contours computed using the pressure recovery scheme: (a)
LIM for @%; (b) RLIM; (c) QMIM.

clean and look very similar. It must be pointed out that clean pressure contours are
obtained for the LIM for 4* and RLIM as the grid resolution becomes very fine, even if
the pressure recovery scheme is not used. This result confirms that a fine mesh resolution
or the special treatment is necessary to get an acceptable pressure field when the LIM is
used.

5. Conclusions

The immersed boundary method is a promising numerical method for flow problems
with complex boundaries as it relaxes the difficulties associated with mesh generation.
The major issues to be addressed are sufficient accuracy for LES or DNS and numerical
efficiency. To this end, several revisions to the method of Fadlun et al. (2000) were
considered in the present study.

In spite of second order accuracy shown theoretically as well as numerically, the simple
linear interpolation method (LIM) was found to have incompatibilities with the time-
marching scheme. This incompatibility is expressed as local error accumulated in the
pressure field. In order to mitigate this problem, a revised version of the LIM was pro-
posed. A few additional corrections were added by handling the contributions from some
of the terms in the decoupled momentum equation explicitly. The decaying vortex test
problem indicated that the RLIM is effective in reducing error in the pressure field while
maintaining the accuracy of the original LIM. Another interpolation method was devised
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by combining a quadratic interpolation formula and the momentum equation. The re-
sulting scheme, QMIM, simulates the discretized Navier-Stokes equation more directly
than the LIM, and is similar to the cut-cell approach in that a formal discretization of
the momentum equation is used. In the numerical tests, the QMIM scheme produces
smaller errors especially when for coarse grid resolutions. Second order accuracy for the
velocity and higher than first order accuracy for the pressure were observed for both
interpolation methods. Computational overhead was found to be less than 15% of the
original computation time for the test case considered.

Another approach for addressing the incompatibility between the interpolation method
and the time-marching scheme was introduced. A condition for the intermediate velocity
field was enforced to obtain proper accuracy for the pressure. In order to satisfy this
condition, a correction to the intermediate velocity field was considered. This additional
correction, referred to as a pressure recovery scheme, reduced the velocity and pressure
error in most cases. The pressure recovery scheme is especially effective for coarse meshes.
The practical importance of mass conservation for the IB method was another issue
addressed. The additional treatments for mass conservation are closely related to the
finite volume method for an unstructured mesh. The different levels of mass conservation
for new volume cells formed by the IB and existing cell faces were considered. This
revision is very useful when the velocity boundary condition is not zero. In the numerical
test, we observed that the flow field can be affected to a large extent by the boundary
region if mass conservation for the IB cells is not carefully considered. Various approaches
have been considered to solve this problem.
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A computational and experimental investigation
of flow inside branched coral colony

By S. Chang {, G. Iaccarino, C. Elkins I, J. Eaton { AND S. Monismith

1. Motivation and objective

Coral reefs have the highest biodiversity of any marine ecosystem. Though they cover
only 15 percent of the ocean surface between the depth of 0 to 30 meters (Smith, 1978),
coral reefs shelter nearly a quarter of all marine life. The host of organisms that thrive in
the reef system, of which only about 10 percent have been described, bears tremendous
potential for modern medicine (Serageldin 1998). Furthermore, coral reefs are impor-
tant economic resources, serving as fisheries and breakwaters for coastal communities.
In spite of their ecological and economic significance, 30 percent of the world’s coral
reefs are severely damaged, and 60 percent are projected to be lost by 2030 (Wilkin-
son 2002). Overfishing, agricultural pollution, and coastal development alter the species
and nutrient balance in the water, making corals less competitive against fleshy seaweed
(Hughes 1994; McClanahan et al. 2002). Warming of the seawater caused by global cli-
mate change overheats the coral, which is extremely temperature sensitive. The coral,
in response, expels its symbiotic algae, zooxanthellae, such that the coral itself becomes
white, or bleached. Prolonged bleaching episodes, which have been observed to increase
in frequency and magnitude in the last 30 years (Hughes et al. 2003), cause coral death
throughout reef systems.

Given both the importance and the fragile state of coral reefs, understanding the mech-
anisms for coral growth is crucial to the survival and possible recovery of the remaining
reef systems around the world. Corals are able to flourish in low-nutrient, oligotrophic
waters because of their ability to efficiently use their limited resources for growth. In this
work we hope to explore the role of hydrodynamics in coral growth through innovative
computational and experimental methods.

Hydrodynamics directly affect coral growth, energetics, and health. Sessile organisms
such as corals rely on water flow to deliver their nutrients, and consequently the nature
of the flow plays an important role in determining nutrient availability. Coral has two
metabolic roles that have functional dependence on flow: one as a zooplankton-ingesting
heterotroph, another as a benefactor of symbiotic autotrophs. As heterotrophs, the coral
polyps capture zooplankton that is carried by the flow for sustenance. As autotrophs, the
symbiotic algae zooxanthellae depend on the concentration gradient of inorganic nutrients
established by the diffusive boundary layer. Additionally, the structural integrity of the
coral is susceptible to the amount of force the moving fluid imposes on the geometry.
Clearly, hydrodynamics plays a crucial role in coral subsistence.

Corals live in a variety of hydrodynamic conditions, with flow velocities ranging from
5 cm/s in the fore reef up to 100 cm/s in the surf zone (Sebens 1997). Consequently,
corals have adapted structurally, resulting in morphologies that vary in branch-spacing
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FIGURE 1. Low and high flow morphologies of several corals from Eilat, Israel.

and width (Fig. 1), from plate-like to massive. For instance, coral geometries with denser
branching tend to divert more flow to the exterior, establishing a larger stagnant region
in the core of the geometry and greater shear above the colony due to a higher exte-
rior velocity. For the same flow condition, coral geometries with sparser branching will
allow more flow through the interior, resulting in greater force imposed upon the inte-
rior branches by the flow. Quantifying the functional dependence of the resulting flow
field on coral morphology and hydrodynamic environment will significantly contribute to
understanding nutrient transport.

Hydrodynamics also directly affect the corals’ requirements for structural stability.
As the large-scale physical damages to coral reefs by hurricane-driven waves attest, the
structural integrity of the coral structure is susceptible to damage due to the amount of
force the moving fluid places on it (Sebens 1997). Corals that live in wavy, high-energy
environments need more robust branches and lower surface area to volume ratios in order
to prevent breakage. In slower flows, corals can afford structurally weaker morphologies
to optimize for nutrient and feeding priorities. Conversely, some species take advantage
of periodic storm events by having thin branches that break off, and then recolonize
elsewhere on the seafloor (Sebens 1997). No matter what the adaptive behavior is, the
force that the flow imparts on the coral structure deems particular morphologies more
suitable for one versus another hydrodynamic environment.

Additional complexity arises from the fact that the hydrodynamics throughout the
colony, defined as one skeletal unit, e.g. one head, are locally variable and therefore
cannot be adequately modeled with bulk flow and roughness parameters at the scale
important for these processes. The coral geometry acts as a bluff body that perturbs the
flow, resulting in recirculation zones and regions of localized acceleration, deceleration,
and stagnation (Chamberlain & Graus 1975). Such spatially and temporally variable flow
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in turn leads to differential local nutrient concentrations and boundary layer thicknesses
throughout a coral colony, which, after a long enough time, may induce localized cal-
cification for a single coral head resulting in a specific preferential growth form (Oliver
et al. 1983; Lesser et al. 1994; Bruno and Edmunds 1997). The resulting new geome-
try then interacts with the flow in a slightly different way, which once again has direct
consequences on local nutrient availability and coral growth (Kaandorp & Kiibler 2001).

To better address this complex interaction, we believe that it is possible to create a
comprehensive model of corals based on first principles, i.e. a virtual coral. This model
would simulate numerically the flow and mass transfer in and around a coral colony,
given the specific geometry of the coral. Since the geometry of the coral itself depends on
local calcification rates, the rates would be calculated using model representations of the
chemistry of calcification and of photosynthesis by the zooxanthellae. This comprehensive
approach would require models of the light field incident on the coral surfaces, including
among other physics the focusing effects of surface waves. When complete, this model
should be capable of testing hypotheses relating changes in flow, morphology, nutrient,
light level, and temperature to the coral’s physiological response, e.g. calcification rates
and pattern, photosynthesis rates, or bleaching. As the first step in the development of
the virtual coral model, we will perform detailed calculations of flow through a single coral
head, allowing for the explicit computation of local stresses, forces, and mass transfer
rates at every point on the surface of a coral head. Specifically, we propose to:

e Compute and validate through comparisons with experiments the variability of stress
and velocity fields throughout a single colony, including the interstitial area between the
branches.

e Assess the effect of the flow conditions (e.g. variable velocities, unidirectional versus
oscillatory flow) on mass transport.

o Assess the effect of roughness on mass transport, considering both

o large-scale geometric roughness as characterized by morphologies from different
species and flow regimes;

o small-scale surface roughness as characterized by the mucus membrane and polyps
attached to the large-scale geometry.

To achieve these goals, we will use a numerical simulation technique based on the
Immersed Boundary (IB) method to calculate the flow and mass transfer around a single
coral colony. The IB technique has proven to be effective and efficient for computing flows
around complex geometries (Iaccarino et al. 2003; Iaccarino & Verzicco 2003; Grigoriadis
et al 2004). The coral morphology and flow conditions can be varied in the simulations
to determine the effects on the flow field and on nutrient transport. The results will
be validated using a combination of Magnetic Resonance Velocimetry (MRV) for the
interstitial flow and Particle Image Velocimetry (PIV) for the wake region of the coral.

2. Experimental setup
2.1. Coral geometry acquisition

In order to mimic the flow around corals in the field conditions, we need to incorporate
realistic geometries in our experiments. For this purpose we have selected Stylophora
pistillata, a Red Sea coral found more commonly in slower, unidirectional flow regimes,
for this purpose.

The coral need to be digitally represented so that the geometry can be built using
rapid prototyping manufacturing and imported into the computational flow domain.
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FIGURE 2. Stylophora pistillata, low low morphology. (a) CT scan: This image is a compilation of
245 images taken at every 0.7 mm (in the direction out of the page). The pixel size is 0.35 mm x
0.35 mm with an 18 cm by 18 cm field of view, resulting in a 512 x 512 matrix of intensity values
for each image. (b) Postprocess with MIMICS to create a three-dimensional representation in
stl format.

The digital format is obtained by scanning the coral skeletons using x-ray computed
tomography (CT). This medical technology is ideal for our purpose; the method is able
to effectively image calcium carbonate, the basis for both bones and coral skeletons, and
render occlusions in the contorted coral geometries. Two-dimensional images (Fig. 2a)
are constructed from linear projections of x-rays taken at many different angles along a
single plane, which then are shifted by a small distance (thickness) perpendicular to the
image plane to acquire the next set of projections (Bushberg et al. 1994). Each image
then has an associated thickness.

2.2. Coral model and setup

The size of the experimental facility is limited by the MRV system. In order to accom-
modate the restriction, a 75% model of the coral colony was built by Dr. Ryan Wicker
at University of Texas at El Paso (UTEP) using a fused deposition manufacturing sys-
tem (Figure 8 shows the 100% model, Figure 9 shows the 75% model in the channel).
MRYV-compatible resin manufactured by DSM Somos was layered with water-soluble sup-
ports for the overhanging branches. The supports were then dissolved to create the final
model. To house the model, a unidirectional flow laboratory setup (3) has been designed
and constructed to create an inlet flow condition that is as uniform as possible (see e.g.
Vogel, 1983). To fit inside the 26 cm diameter head coil, the channel is confined to the
maximum size of 19 cm wide by 17 cm tall. Attached to the front of the channel is a
diffuser with three differential pressure drops (50% void ratio in the center region, 75%
around the perimeter) to prevent the flow from stalling. The inlet contains two additional
screens and a baffle for the same purpose. The outflow releases into a reservoir, which
is connected to a pump and then recirculates to the inflow. The velocity in the channel
with the current set up is approximately 5 cm/s.

3. Computational study

The Immersed Boundary (IB) technique enables numerical simulations of the flow
around very complex geometries to be performed on simple Cartesian grids with local
grid refinement. In the present application the coral is not physically present in the
computational domain when the mesh is generated and its presence is accounted for via
modifications to the governing equations. These modifications take the form of a forcing
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FIGURE 3. Stylophora pistillata skeleton (left) and rapid-prototyped model (center). Channel
set-up for MRV and PIV (right)

term which mimics the effect of the physical boundary conditions enforced on the coral
surface. In the present implementation of the IB approach the solution in the vicinity
of the coral is reconstructed on the basis of the computed flow away from the body and
the no-slip condition on the surface. Inverse distance interpolation is used (Iaccarino &
Verzicco 2003). Although the objective is to ultimately perform Large Eddy Simulation
with the IB technique, we have carried out some preliminary simulations with a Reynolds
Averaged Navier-Stokes (RANS) model to gather initial solutions to be compared to
experiments and to investigate the grid resolution requirements for capturing the details
of the flow. The computation code used, namely IBRANS, is based on the solution of
the three-dimensional, steady-state RANS equations using a finite volume, collocated
discretization where all the flow variables (e.g. pressure and velocity) are defined at the
center of each grid cell (see Iaccarino et al. 2003 and Taccarino & Verzicco 2003 for
details). The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) pressure-
correction algorithm is used. The continuity equation is converted into a discrete Poisson
equation which subsequently is used to correct the momentum equations. A second-order
accurate discretization is used to solve the governing equations; the solution is computed
iteratively using a fully implicitly scheme. The boundary conditions are treated explicitly,
where no slip is assumed along the immersed boundary of the solid surface.
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FIGURE 4. Computational grids generated for the RANS simulations. Horizontal plane at 1/3
the coral height (top) and vertical plane at midspan of the duct (bottom). The mesh contains
= 2 million cells

Computational grids are generated automatically starting from the CAD definition
of the coral geometry (in stereo-lithography format); the duct described previously is
modeled without the inlet diffuser; the flow is assumed to be uniform at the inlet and
no-slip boundary conditions are specified on the duct walls. The mesh size is specified
on the coral surface and grid resolution is achieved through local grid refinement. Three
grids have been generated and their cross-sections (corresponding to a longitudinal plane
halfway through the duct) are reported in Fig. 4.

4. Experimental study

MRV is a non-invasive experimental technique which allows the acquisition of the
entire three-component mean velocity field in a three-dimensional flow domain a medical
Magnetic Resonance Imaging (MRI) scanner. MRI is a medical technology that uses
magnetic field and sequences of radio frequency pulses to extract images inside an object.
The method relies on the atomic structure of the object being imaged. In the absence
of a magnetic field, the spin and charge distribution of the individual atoms result in
magnetic dipoles that is randomly oriented due to thermal energy. The MRI coil imposes
an external gradient magnetic field such that the net magnetic moment of the atoms
in the sampled object aligns itself with the field, while each individual dipole precesses
around the orientation of the magnetic field such that at any given time its position
can be described by a phase. When motion is present, the location of fluid parcels are
marked based on their phase, which then can be reconstructed with Fourier transform.
This method has been used to measure turbulent flow in a highly complex internal flow
geometry modeling the internal cooling passage of a gas turbine engine blade (Elkins et
al. 2003). The data have been validated against PIV measurements on selected planes
and have also been used to validate a numerical simulation of the same geometry using
the IB technique (Taccarino et al. 2003).

The setup shown in Fig. 3 was placed in the MRI chamber and preliminary mea-
surement were collected. The flow-meter indicated the flowrate as 81 L/min, which is
equivalent to 5.2 cm/s for the channel. The resolution is approximately 1.25 mm by 1.25
mm in the zy plane, with 1 mm thick slices along the z axes. Total scan time was 9.35
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FIGURE 5. MRV velocity result at approximately 1/3 of the height of the coral. The images are
scans flow off, flow on, and flow off subtracted from flow on, respectively. Flow is going from
bottom to top. The color gradation is an indication of streamwise velocity in mm/s. The veloc-
ities are inverted; negative velocity indicate upward direction, and conversely, positive velocity
indicate downward or reverse direction.

minutes. A 0.5% by volume gadolinium solution was used to enhance the signal. An ex-
ample of the results is shown in Fig. 5. The MR signal of the setup with the pump on
and off were recorded, such that the flow off condition can be subtracted from the flow
on condition such that the signal would only be from the flow.

The preliminary result clearly show a wake behind the coral geometry as a whole, as
well as effects of the coral branches itself. Because of the size of the channel, which in
effect occupy the entire space in the magnet coil, the edges of our domain, where the
magnetic field lines curve, require more refined reconstruction.

5. Preliminary analysis of the flow field

Preliminary calculations and measurements are compared in a vertical plane corre-
sponding to the duct mid-span and in an horizontal plane at 1/3 of the coral height
(in Fig. 6 and Fig. 7, respectively). The Reynolds number, based on the coral height
and the inflow bulk velocity, is Re = 4,700. The (steady-state) calculations indicate the
presence of a rather large wake with maximum negative velocities twice vinfi0w. The
structure of the wake is highly three-dimensional and the branch distribution is clearly
visible through the presence of high velocity spots. The comparison between MRV and
IB data is, at this point, not satisfactory. It must be noted that from visual observation
during the measurements, the flow has a strong unsteady nature. This is neglected by the
current steady-state calculations and can lead to substantial overpredictions of the wake
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FIGURE 6. Comparison of experimental (MRYV, top) and numerical (IB, bottom) results for a
vertical plane at the duct mid-span section. Streamwise velocity shown.

Fi1GURE 7. Comparison of experimental (MRYV, top) and numerical (IB, bottom) results for a
horizontal plane at 1/3 height of the coral. Streamwise velocity shown.

strength and size (Durbin, 1995). In addition, the MRV data are collected in frequency
space over &~ 10 minutes. For this reason, the collected data might not represent correctly
neither the time-averaged or the instantaneous flow field. Moreover, flow rate measure-
ments show large discrepancies during the testing. These difficulties in the acquisition of
satisfactory experimental and simulation data are currently being addressed.



Computation and experiment of flow over coral 53

6. Conclusion

Coral reefs are clearly of great ecological significance, and as is often the case with
ecosystems of importance, the health and survival of coral reefs are threatened. In order
to diminish the degree of degradation and even possibly facilitate the recovery of coral
reefs, a better understanding of coral biology must be developed, within context of the
environment that so greatly influences its fate. As shown repeatedly in the literature,
basic aspects of coral ecology, growth, and health, can strongly depend on flow.

In order to examine this dependence, this work has spanned a wide array of techniques.
The acquisition of a real coral geometry in digital format required scanning the coral
skeleton using CT; the same model is then used for both the computations and the
measurements as a physical model of the coral (not the actual skeleton) must be used.
For the construction of this model, a complex rapid-prototyping technique (Iyengar et
al. 2004) was utilized due to the very complex geometry with many occlusions and
overhangs. The model was placed in a channel built for this experiment and the velocities
were extracted using MRV. The numerical technique IB was used for its efficiency with
complex geometries, resulting in some preliminary computational results to compare with
the experimental results.

These innovative computational and experimental methods will elucidate previously
unresolved dynamics on the scales important to mass transfer. As hydrodynamics con-
tinue to change due to increased storm events resulting from climate change and continued
human manipulation of the coastline by dredging and building infrastructures such as
breakwaters, understanding the interactions between hydrodynamics and coral will be
crucial for preserving the remaining coral reefs.
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Numerical issues and freestream behavior of the
v%-f model.

By G. Kalitzin

1. Motivation and objectives

The numerical method used to solve the equations of a turbulence model is of com-
parable importance to the concerns about the representation of the flow physics, as its
efficiency and robustness determines the overall performance of the flow solver. The v2-f
model by Durbin (1995) has shown to reproduce mean flow and turbulence quantities
accurately for a large number of turbulent flows (Durbin 1995; Parneix & Durbin 1997;
Kalitzin 1999). However, the stiffness of the equations and, in particular, of the wall
boundary condition that results from the strong near-wall coupling of the v? transport
equation and the elliptic relaxation equation for f, hindered its application to large scale
industrial flow applications.

Lien & Durbin (1996) proposed a ‘code-friendly’ version of the v?-f model. In this
version, source terms have been introduced in the v? and f equations and f = 0 is
imposed at the wall. This model allowed a segregated solution of the turbulence field
equations and it has found wide spread use in many commercial CFD codes. Although
this version of the model was constructed to reproduce the results obtained with the
1995 version of the model, it has been found, that the introduced modifications lead
to larger deviations in certain flow regimes. In general, the modified model predicts a
delayed laminar-turbulent transition. For low-Reynolds number flows this may actually
improve flow field predictions. However, the model prediction mechanism of transition
is not fully understood and it is undesirable as it also affects flow predictions at high-
Reynolds numbers.

In the search for robustness, Laurence et al. (2004) proposed another ‘code-friendly’
version of the v2- f model. This model is based on the substitution of the ratio v2/k with a
variable ¢ and the alteration of the governing equation by neglecting source terms in the
f-equation. The developers of this model have tested the model on channel, diffuser flow
and flow over periodic hills. Results reported reproduce the results of the 1995 version of
v2-f, while retaining the easier convergence properties of this ‘code-friendly’ version.

Kalitzin (2002) presents a numerical scheme for the solution of the 1995 version of the
v2-f model. That scheme solves the implicit, pairwise coupled discretized equations of
the model using a Diagonally Dominant Alternating Direction Implicit (DDADI) solver.
For steady state computations, local time stepping is utilized for the advancement of the
turbulence equations.

The present paper proposes a modification to that scheme. It is argued that the robust-
ness of the DDADI algorithm applied to the v2-f model can greatly be improved when
local time stepping is substituted with explicit under-relaxation. The resulting scheme
has some very desirable properties and shows a very efficient and robust behavior.

In addition, the paper also conducts an analysis of the freestream behavior of the v2-f
model. It is shown, that under certain flow conditions the model provides a negative
solution for the turbulent kinetic energy in the freestream. This may lead to numerical
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instabilities if not prevented by minimum limiters for the turbulence variables. A mod-
ification of the model is proposed that eliminates this problem and no such limiters are
required.

The new DDADI scheme with explicit under-relaxation is applied to the prediction
of flow over a wing that generates a large wing-tip vortex. For this case, the turbulence
field is strongly coupled with the mean flow. Comparisons with the model by Spalart &
Allmaras (1994) reveal significant differences in the prediction of the wing-tip vortex.

2. Improvement of the solution algorithm for the v?-f model

The v2-f turbulence model by Durbin (1995) consists of, in addition to the usual
transport equation for the turbulent kinetic energy k and dissipation ¢, a transport
equation for the scalar v? and an elliptic relaxation equation for f:

1
6tk+U'Vk‘=EV'[(/L+Ht)Vk]+Pk—E

1 Ca Py —C:
Qe tu Vo=V -[(u+ ?)v5]+ e 2

— — 1 — £— ’ (2.1)
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where the eddy-viscosity is defined as:

ve = CuTv? (2.2)

The stiffness of the model results mainly from the f wall boundary condition:
fu = 200"} [ (ewyi) (2.3)

Kalitzin (2002) describes the implementation of this model in the compressible, struc-
tured multiblock code TFLO. The model is solved in a separate set of subroutines,
segregated from the mean flow. In each block, multigrid is used for the mean flow and at
each multigrid cycle the model’s subroutines are called on the finest grid. They return an
updated value of the eddy-viscosity and turbulent kinetic energy. These two quantities
are passed to the mean flow solver for the determination of the Reynolds stresses.

The model equations are solved in an implicit, pairwise coupled manner, with a cell cen-
tered finite difference scheme. The pairwise coupled solution of the field equations allows
an implicit treatment of the wall boundary conditions. The implicit matrices are factor-
ized with a DDADI scheme. The treatment of the boundary conditions as source terms
prior to factorization allows an implicit treatment of the boundary conditions in each
sweeping direction of the scheme, decreasing the sensitivity of the factorization scheme
to the order of the sweeping directions. The diffusion terms are discretized with second
order central differences. First order upwind differences are used for the discretization of
the convective terms.

In Kalitzin (2002) steady state solutions are achieved by marching in time from an
initial guess. The time step was determined by scaling the local time step obtained from
the mean flow with a constant factor. This factor was obtained by numerical experi-
mentation. Another way of advancing the turbulence equations is by means of implicit
under-relaxation. Implicit under-relaxation is equivalent of local time stepping with the
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time step:

At=—2 (2.4)

(1-a)B

where « is the relaxation parameter (0 < a < 1). B is the diagonal element of the implicit
matrix that depends on the solution and grid. The advantage of implicit under-relaxation
is that the time step for the turbulence equations is determined by the numerical prop-
erties of the discretized turbulence equations rather than through mean flow criteria and
numerical experimentation for the scaling factor.

However, there are some disadvantages when implicit under-relaxation is applied to the
v2-f equations. When implicit under-relaxation is employed it introduces automatically
an unsteady term in the f-equation changing its elliptic nature. Following equation (2.4)
it also introduces local time stepping when a constant under-relaxation parameter is
used. Local time stepping has been found to worsen the convergence of the v?-f model
for certain flows with strong shock-boundary layer interaction.

A way to avoid the introduction of an unsteady term in the f-equation is to use
explicit under-relaxation. Here, the solution of the discretized model (2.1) in delta-form
is weighted and added to the previous iterate:

O = ¢" + alA¢ (2.5)

where ¢ is again the relaxation parameter with 0 < a < 1.

Computations show that explicit under-relaxation works well when a DDADI factor-
ization scheme is used. The factorization error, that is usually scaled by the time step,
seems to have no significant impact. Further work needs to be done to assess this error.

3. Freestream solutions

In the freestream the velocity is u = uy. By neglecting diffusion and production the
equations of the model (2.1) simplify for the steady state as:

Ok
Oe ng
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The turbulence time scale is bounded at the lower end with the Kolmogorov scale as:
k
T = mazx [—, 6 K] (3.5)
€ €
For T = k/e the analytical solutions of the differential equations (3.1)-(3.3) are:
k = ko5TeT (3.6)
—Ce2
€ =ggiTea—T (3.7)
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FIGURE 1. Turbulent kinetic energy (a) and dissipation (b) of convecting freestream turbulence
with T 0 = 0.01, v40/v =3.6. ———— : T =k/e;—-—:T = 6+/V/¢;

: analytical solution.

with 2 = €2=120 (z — z9) + 1.
For T = 6+/v/e the equations (3.1)-(3.2) decouple and the analytical solutions are:

12,/eogv 1
= ko — 1- = .
k= ko o ( 2) (3.9)
€0
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2 — — — (= — —2)2 Ce2 11
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with 2 = f;iﬁ(x — Zo) + 1. In contrast to equation (3.6), the equation (3.9) gives

negative values for k for certain values of €9 and a computational domain that exceed a
critical length.
Turbulence at the inflow boundary of the computational domain can be specified
through the turbulence intensity, T,,, and the ratio of eddy to molecular viscosity, vy /v:
2

0= S(Tuuw)?, e = 0.095-0 (3.12)
2 Vyo

The dissipation is here specified using the standard eddy-viscosity definition and equation
(2.2). The coefficient is 8 = Cuv_%To /(0.09%3 /o). In the freestream the factor 3 is about
B = 1.4 assuming that Ty = ko/eo and 02y = 2ko/3. The coefficient C), is 0.19.

In equation (3.9), 2 = 1 for © = x¢. At this location, k has its maximum. The minimum
of k is located at z — oo which corresponds to x — oo. For it to be positive the initial
value kg has to be:

k

12, /egv
1
" (3.13)

Substituting e¢ with the relation (3.12) a minimum bound for the ratio of eddy to molec-
ular viscosity can be derived as:

ko >

Vio 3.6\°
- - ~ 3.61 .14
. >(052) 8~ 3.618 (3.14)
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FIGURE 2. Turbulent kinetic energy (a) and dissipation (b) of convecting freestream turbulence
with T 0 = 0.01, v40/v =3.0. ———— : T =k/e;—-—:T = 6+/V/¢;

: analytical solution.

This bound guarantees k > 0 for any x.

The solution of equations (3.6) and (3.9) are plotted in Figure la. The figure includes
the analytical and the numerical solutions obtained by solving the full v2- f model (2.1) for
uniform flow. The chosen flow conditions are: uy, = 58m/s,v = 1.5510~°m?/s, T, = 0.01
and v /v = 3.6. The computational domain is 10m long. The coefficient C., is equal
1.9. Tt can be seen that the solutions for k are very similar and positive for both cases
with T' = k/e and T = 6+/v/e.

Figure 2 shows the solution for v; /v = 3.0. Equation (3.9) gives now negative values
for k. Comparing Figures 1b and 2b it is interesting to note the large change in k£ while
the e distribution (3.10) hardly changed.

It can be shown that the turbulence time scale (3.5) is eventually bounded with the
Kolmogorov scale independently of the values of ky and g¢ at the inflow. When T' = k /¢,
the turbulent kinetic energy is related to the dissipation following equations (3.6) and

(3.7) as:
e 1/052
k= (_> (3.15)
€0
The turbulence time scale, defined by equation (3.5), hits the lower bound when
k= 6y/ve (3.16)
The two functions (3.15) and (3.16) intersect for
2/C =&
£ €2 36V 2—Ce
£ = <OT> (3.17)
0
The corresponding location is according equation (3.7):
€1, 1=Ce2 Usokig
T1 = To + —) Ce2 —1) ————— 3.18
L= a0+ ()5 1) R (3.18)

Once the bound is reached, the turbulence variables are given by equations (3.9)-(3.11)
whereby the values at z; are used as initial values.
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FIGURE 3. Turbulent kinetic energy and dissipation of convecting freestream turbulence with
Tu,0 = 0.01 and v; /v = 3.6. The turbulence time scale is: a) T = k/e and b) T = 6+/v/e.
: Az = 0.0025, 2*? order; ——-- : Az = 0.025, 1°* order; —-— : Az = 0.1, 1** order.

The behavior of v2 in the freestream is given by equations (3.8) and (3.11) for the
unbounded and bounded case, respectively. Note that the variable v? behaves like k
when v2o/ko = 2/3. In this case f in the freestream is identical zero.

3.1. Discretization error

For robustness, the convection terms are usually discretized with an upwind scheme. It
can be shown that the numerical dissipation resulting from the upwind treatment of
the convection terms aggravates the problem of negative turbulent kinetic energy in the
freestream. For this, we analyze the transport equation for the turbulence kinetic energy
in the freestream discretized for cell ¢ with first order upwind. For u, > 0 the discretized
equation (3.1) becomes:

ki —ki1
A Taylor series expansion gives
ok 0%k\ Ax?
ke [9EY Ap— (ZE) 22 2
By = ks (%) s (aw) : (3.20)
which leads to:
ok 0%k Az

The second derivative of k is positive according to equation (3.9). The second term on
the right hand side of equations (3.21) acts as negative source term. Results for different
grids and discretizations are shown in Figure 3 for the same flow conditions as used for
Figure 1. Clearly, for both time scale definitions the numerical error deteriorates the
solution. However, the lack of coupling between the k and e equation for T' = 64/v/e
prevents ¢ to decrease for lower values of k as shown for the case T = k/e¢ in Figure 3a.
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Spalart-Allmaras model v2-f model

FIGURE 4. Wing-tip vortex visualized with Az-surface colored with pressure contours and
eddy-viscosity contour-lines in selected planes

4. Model modification

The lower bound for the turbulence time scale has been designed by Durbin (1995) to
enforce the correct asymptotic behavior of the k- equations near the wall. Thus it should
be applied only in the near wall region. There are several ways to eliminate the lower
bound in the freestream. The simplest way is to define a large value for the eddy-viscosity
at the inflow. One can also define a distance from the wall which specifies the near wall
region and thus the region where the limiter (3.5) is active. More sophisticated solutions
include the use of an interpolation function similar to that used by Durbin (1995) for the
coefficient C.1 or the one used by Menter (1993) for the switch between the k-w and k-&
models. The latter two possibilities require testing to avoid the situation that the bound
is not active when it is needed. At the current stage we utilize a larger ratio of v, /v at
the inflow.

5. Wing-tip vortex

The goal of this test case is the accurate prediction of a wing tip vortex generated by
a low aspect ratio wing. The flow conditions are: Re. = 4.610%, M = 0.15 and o = 10°
for which extensive experimental data is available by Dacles-Mariani et al. (1995). To
reduce the influence of the inflow and outflow boundaries, the computational domain
has been extended both upstream and downstream by one cord length. The wall normal
grid spacing is such that y™ < 0.5. The wind tunnel walls are treated as inviscid walls to
reduce the grid size. The computations were carried out with TFLO with a low dissipative
Roe’s approximate Riemann solver in combination with a second order reconstruction
scheme and several turbulence models.

Preliminary results obtained with the Spalart-Allmaras and v2- f turbulence models are
shown in Figure 4. The wing-tip vortex is visualized with a A2 & 0 surface as described by
Jeong & Hussain (1995). The A, surface is colored with pressure contours. Eddy-viscosity
contours are plotted in selected planes.

The eddy-viscosity contours show that the level of turbulence in the vortex is much
less for v2-f than for Spalart-Allmaras. The lower levels of eddy-viscosity mean that
there is less diffusion in the vortex and therefore it is preserved over a longer distance.
As demonstrated in Figure 4, the diameter of the vortex core grows much slower when
v2-f is used.
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6. Conclusion and future work

The first part of the paper describes a modification to the DDADI scheme developed
earlier by Kalitzin (2002) for the solution of the v2-f turbulence model. A significant
improvement in robustness can be achieved when explicit under-relaxation is used instead
of (local) time stepping when solving the turbulence equations. The described solution
algorithm makes computation with the 1995 version of Durbin’s v2- f model comparable
efficient and robust as with other RANS turbulence models like the Spalart-Allmaras or
Menters SST model.

The second part of the paper describes the freestream behavior of the v2-f model. It
concludes that a modification of the lower bound for the turbulence time scale is needed
to prevent its use in the freestream where it may cause negative values for the turbulent
kinetic energy. These may also be prevented when large values for the eddy-viscosity are
specified at the inflow.
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A turbulence model for polymer flows

By Y. Dubief, G. Iaccarino AND S. K. Lele

1. Motivation and background

Recent advancements in the modeling of polymer drag reduction in the context of
RANS simulation are discussed. The present model is derived from the current under-
standing of the mechanism of near-wall turbulence in drag reduced polymer flows de-
scribed in Dubief et al. (2004) and adapted to the v — f turbulence model introduced by
Durbin (1995) for Newtonian flows. Results for channel flows with homogeneous polymer
concentrations prove to be very satisfactory. The model captures accurately the behavior
of the mean velocity profiles for the two main regimes, called LDR and HDR, Low and
High Drag Reduction, respectively.

1.1. LDR and HDR

For drag-reduced flows with polymers, turbulent statistics have been extensively charac-
terized by experiments. Warholic et al. (1999) established the existence of two distinct
statistical regimes. For a given polymer molecule, the mean velocity profile experiences
an upward shift of its log-law region for the smallest concentration, up to a drag reduction
(DR) of the order of 40%. This regime is referred to as the Low-Drag Reduction (LDR)
regime. A further increase in concentration leads to a change in the slope of the log-law
which defines the High-Drag Reduction (HDR) regime. As more polymers are added,
the flow tends toward an asymptotic state, called the Maximum Drag Reduction (MDR)
regime, for which drag is slightly higher than the laminar state Virk & Mickley (1970).
The components of the Reynolds stress tensor w;u; decrease in magnitude when scaled
with outer variables (here, the centerline mean velocity of the Poiseuille flow U, and the
channel half-width h) as DR increases. Yet the diminution of the rms u’ of the stream-
wise velocity fluctuations is small compared to v/, w' or ww and it results in an increase
of the maximum of «'" in the wall region (T denotes the scaling by inner variables based
on the skin-friction velocity u, and the viscosity v). LDR produces the largest maximum
values of v’ whereas the peak seems to reduce back to the DR = 0% case at HDR and
MDR. The latter regime is still not completely understood from a physical point of view
and will not be further discussed here.

1.2. Conceptual model for the mechanism of polymer drag reduction

Using Brownian dynamics simulation, Terrapon et al. (2004) showed that polymers expe-
rience significant stretching in upwash and downwash flows generated by vortices. Dubief
et al. (2004) completed Terrapon’s work by studying how polymers interact with co-
herent structures. The viscoelastic simulations performed in this latter article confirmed
that polymers extract energy from vortices causing them to weaken. In the meantime, a
significant part of the energy stored by polymers that are caught in downwash flows is re-
leased in high-speed streaks where viscous forces dominate. The damping of streamwise
velocity fluctuations by Newtonian forces is therefore countered by viscoelastic forces.
Dubief et al. (2004) then proceeded to incorporate polymers in the regeneration cycle of
near-wall turbulence as proposed by Jiménez & Pinelli (1999), as sketched in Fig. 1. For
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mean shear
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dyﬂii”

Stretch

Vortices =—————» [streaks|

FIGURE 1. Model of the mechanism of polymer drag reduction in near-wall turbulence.

a Newtonian flow, the mean shear gives birth to streaks through instabilities. Pertur-
bations and instabilities then produce vortices which transfer momentum vertically and
sustains the mean shear. According to the dynamics introduced earlier, polymers sits at
the center of this regeneration cycle as shown in Fig. 1.

2. Governing equations and numerical method
2.1. Polymer model

The evolution of polymers is represented on the basis of bead-spring (dumbbell) models.
Each dumbbell is subject to the hydrodynamic forces exerted by the flow on the beads,
the spring force and Brownian forces. The balance of forces gives an evolution equation
for the end to end dumbbell vector q, known as the FENE model (Finitely Extensible
Nonlinear Elastic). A constitutive approach is obtained by taking into account the Brow-
nian motion using a phase average of the product of the g-components, which defines the
conformation tensor ¢;; = (g;q;). The hydrodynamic and relaxation (spring) forces are
explicitly simulated; the latter force can be estimated with various models. The model
used here is the FENE-P model, where P stands for the Peterlin function, f, defining
the following set of equations

1
Orcij + urOkcij = CrjOpu; + CikOruy — X(fcij —dij) » (2.1)
1
= - 2.2
f 1= oo/ L? (2.2)

The parameter L is the maximum polymer extension and X is the relaxation time of the
polymers. The relevant non-dimensional quantity to describe a polymer solution is the
Weissenberg number, We, the ratio of the polymer to the flow time scales which can be
the outer or inner scales:

AU, Au2

We = or We, = —~ (2.3)

where u, is the skin-friction velocity of the Newtonian flow, unless specified otherwise.
U. and h are the integral scales for a channel flow, namely the centerline velocity and
the channel half-width. Finally the contribution of polymers to the flow is brought in the
momentum equations via the divergence of the polymeric stress tensor 7;;,

1
Tij = X(fcij —dij) » (2.4)
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run Wero B b
1 36 0.9 10000
2 60 0.9 3600
3 120 0.9 10000
4 36 0.9 19600
5 36 0.9 3600
6 60 0.9 19600
7 40 0.4 25600

TABLE 1. Polymer parameters for the channel flow DNS database used for the validation of
v? — f — p. The Reynolds number

1.0 Co T T T T T T T

du
y

d
,Tmy,ﬂlld

_’U:”U,

FIGURE 2. Contributions of the Reynolds shear, polymer and viscous stresses to the balance Eq.
(2.6. For LDR: , ﬂug—z; o, —uwv'; e, Ty FOR HDR: ---- | ﬁug—;; A~y e Ty
-------- , 1 — £_ The stresses are normalized by u, and v.

yielding the viscoelastic momentum equations,
Opu; + u]-@ju,- = —0;p+ ﬁu6j6ju,~ + (1 — ﬁ)V@jTij R (25)

where 3 is the ratio of the solvent viscosity v, to the total viscosity v. The last term in
the rhs of Eq. (2.5) is the contribution of the viscoelastic stress to the flow.

2.2. Reference DNS solutions

The model development and validation is performed using a series of DNS solutions in
a channel flow. The numerical method for the DNS calculations is described in Dubief
et al. (2005).

The Reynolds number based on the bulk velocity is Rey; = 5000, Re, = 300 based on
the skin-friction velocity. The flow is driven by conservation of the mass flow. The runs
used for the present study are summarized in Table 1.

2.3. Statistical properties of LDR and HDR

A RANS model is based on statistical equations derived from the momentum equations
(Eq. 2.5). In the case of interest here, the balance of stresses is:

- du dp y
Y - = == - Z 2.
u'v +ﬂl/dy + Ty [ dm] (1 h) ) (2.6)
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FIGURE 3. Production, Newtonian and viscoelastic dissipation, Newtonian and viscoelastic
transport terms for LDR, (left) and HDR (right). (runs 1 and 3 of Tab. 1, respectively). ,
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where T}, is the polymer stress

AT 2y
dy

Hereafter, the instantaneous quantities are decomposed in a mean and fluctuating part,
u = u + u'. The Reynolds shear stress, viscous stress and polymer stress are plotted
in Fig. 2 for LDR (DR=30%, run 1) and HDR (DR=60%, run 3). The polymer stress
increases with increasing DR to become comparable to (or larger than) the Reynolds
shear stress at HDR.

The second equation to be modeled is usually the turbulent kinetic energy budget,

T:cy = (1 - /B)V

(2.7)

YT T, Tod 8. 57, — adol 8 7. YV
6tuiuj+uk8kuiuj——uiuk(‘)ku] ujuk(?ku, 8kuz-ujuk

P N

— (W00 + wjdip') + Brdwdwuiu} - 28vBuidk]
—_—

eN

+(1 - B)vdy (u;r]'.k ¥ ugrgk) — (1 = B)vTdd, + 71, Ok
v eV

Even though, the v — f model incorporates closures for all the Newtonian terms, it is
of interest to get an indication of the behavior of production (P), dissipation (¢) and
turbulent transport (T'), relative to the additional viscoelastic terms as shown in Fig. 3.
The superscripts N and V' denote Newtonian and viscoelastic dissipation and transport,
respectively. For clarity, the velocity pressure gradient term and the diffusion term are
not plotted. The role of polymers is observed to increase relatively to the production and
Newtonian dissipation as DR increases. The near-wall behavior is further discussed in
the modeling section.

2.4. v2 — f model

The model used for polymer drag reduction is the v? — f model developed by Durbin
(1995). This model is an extension of the classical k — e model to correctly represent the
near-wall behavior (and viscous damping) of the turbulent quantities. This is realized by
a modification of the eddy-viscosity formulation and by solving two additional partial
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differential equations: a transport equation for the turbulent intensity of the velocity

fluctuations v'? normal to the streamlines and an elliptic relaxation equation for f. The
latter represents the effect of the turbulence redistribution. The major advantage of
v? — f over k — ¢ is the absence of wall-damping function. The model solves the following
equations:

e turbulent viscosity

v = 0.220"°T, (2.9)
o kinetic energy transport equation
Otky +T;0iky = P, — e + 0; [(v+ ) 6]']{5,5] (2.10)

e dissipation transport equation

1 JE—
due + 03¢ = 05 (1205¢ ) + = (—14y/1+0.045k /0" P, — 1.9¢ (2.11)
1.3 T
° 02 transport equation
0" + ;0,0 = kyf — 61)7% +8; (v + ) ;07 (2.12)

e elliptic relaxation equation for f

2/3 — v [k P, 507k
—L?9;0;f =14-—" 1~ 3= 2.1
f tajajf Tt + 0.3 kt + Tt ( 3)
e turbulent production (S is the mean strain rate tensor, S;; = (0;4; + 0;u;))
P, = 1, 5? (2.14)

e turbulent length and time scales

3/2 3

k 1/2 k 1/
T, = max [—t,ﬁ (3) ] , Ly = 0.3max lt—,m (”-) (2.15)
g & g £
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3. v2 — f — p model
3.1. Modeling the polymer dynamics in turbulent flows

The tensorial nature of the FENE-P model makes it complex and unattractive in the
context of a simple eddy-viscosity based closure. The modeling of the stretching term is
non-trivial as shown by Fig. 4 where the individual components of the tensor

Aij = ¢y, 0ku + ¢ ;Oru; - (3.1)

Of particular importance is the modeling of the near-wall behavior of A,,. The negative
peak marks the region where polymers inject energy into turbulence, which explains
why this phenomenon is more pronounced at HDR. Note that A and the viscoelastic
dissipation (3) have similar behavior, yet opposite in sign. Using the quantities available
from v2 — f, k¢, U;, ugu;- and S;;, did not yield satisfactory models. This approach required
individual constants per components and failed to reproduce the near-wall behavior so
important to the transfer of energy from the polymers to turbulence.

The difficulty of modeling A;; has motivated the development of an algrebaic model
capable of capturing the energy transfer between polymers and turbulence. Instead of
focusing on the stretching term alone, a simpler measure of this energy exchange is consid-
ered: the polymer elongation, ¢;;. When turbulence stretches polymers, turbulent energy
is stored by the polymers. When polymers coil, elastic energy is released in turbulence.
Fig. 5 outlines the difference between LDR and HDR in terms of the distribution of ¢;; in
the near wall region where local extrema can be interpreted as relative stretching (local
maximum) or recoil (local minimum). The dip close to the wall defines therefore the re-
gion where elastic energy goes to streaks (see the model of polymer drag reduction, Fig.
1). Further away from the wall, the local maximum located in the buffer region denotes
the vortex damping action of the polymers.

The evolution equation for polymer elongation can be recast as

1
Dycii = 2¢;05u; — X (feis —3), (3.2)
——
production d .
estruction

where D; = 0; + u;0;. The stretching term is analogous to a production term, while the
relaxation term effectively destroys elongation. In this framework familiar to RANS mod-
eling, we can develop models based on our physical understanding of the phenomenon.
Note that Eq. (3.2) is unclosed due to the cross terms present in the production term.
The modeling is developed here only for steady-state channel flow with homogeneous
concentration of polymers for which the transport terms in D;c;; vanish. In the destruc-
tion term, the first order approximation fc; = f¢;; is reasonable as shown in Fig. 5 and
will be used in the following. Using our conceptual model of the mechanism of polymer
drag reduction (Fig. 1), we decompose the production into two contributions: contri-
bution from the mean shear and contribution from turbulence, which, in our schematic
representation in Fig. 1, would be the vortices.

If the polymers were subject to the mean shear only, the FENE-P model would reduce
to:

1 —
Eikakﬂj + Ekjakﬂi — X (f@ij — 5,]) =0. (3.3)

For the steady-state channel flow, the system reduces to a single equation, third-order
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where S? reduces to (9,u)?. The solution of this polynomial is shown in Fig. 6 for
LDR and MDR regimes. The wall value of ¢, is accurately predicted by Eq. (3.4) since
turbulent velocity fluctuations vanish at the wall, leaving the mean shear as the only
stretching source for the polymers.

The turbulent contribution to stretching, difference between the total elongation and
the solution to Eq. (3.4), is very similar to the profile of kinetic energy across the channel
flow, as shown in Fig. 6. This resemblance has prompted a model based around k; A which
can be interpreted as a turbulent viscoelastic viscosity, vy,. The effect of turbulence on
polymers is so far described as a linear function of the polymer length b. The proper
scaling of this model imposes the introduction of a turbulent length scale h. The choice
for this length scale is still not clear and in the following, h is chosen as the channel
half-width. Polymers can only be stretched by turbulent eddies only if the time scales of
the eddies is larger than the relaxation time scale. Therefore, under the approximations
considered for the present study, the trace of the conformation tensor is governed by the
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following equation:

AS? A 1

3.2. Modeling the effect of polymers on turbulent structures

In the recent extensive statistical studies performed using viscoelastic DNS, it was ob-
served that most turbulent quantities decrease with increasing drag reduction (see Dim-
itropoulos et al. 2001, for instance). From a RANS viewpoint, the pressure-strain term
decrease needs to be accurately modeled since it determines the level of anisotropy of the
flow and has a direct effect on the behavior the mean velocity, especially in the log-region.
Our first attempt was to add a term in the elliptic equation (2.13) which is the effective
pressure redistribution mechanism in the v2 — f model. This addition was inspired by
Leighton et al. (2003) who developed a Reynolds-stress model for LDR flows. We found
the term to be able to reproduce the upward shift in the log-law but the solution is
extremely sensitive to the user-defined constant related to this term. By increasing the
constant, the flow becomes laminar without ever showing any HDR characteristics.

It was then suggested to us (P. Durbin, private communication) that Eq. (2.13) is
controlled by the turbulent length scale L; = CLk? & /e. We can then argue that the
drop in pressure-strain is a mere consequence of the increase of the typical length scale
of turbulent structures (vortices and streaks), which translates into an augmentation
of L;. This increase must be a function of the polymer concentration, # in the case of
the FENE-P model, the relaxation time A or We and the local polymer stretching. We
propose a linear dependence on these quantities as a first approximation yielding

» k3/2
L, =Cr (1 +yn(l— 6)%We) " (3.6)

where We is used instead of A to satisfy the non-dimensionality of the viscoelastic func-
tion.

The modeling of the interaction between polymers and turbulence uses an approach
similar to the one developed for the polymer dynamics. In the balance of stresses, the
viscoelastic stress T, = (1 — 3)T4, is decomposed in its solution for the mean shear and
a model for the contribution of turbulence. The viscoelastic stress can then be written
in a Boussinesg-like form:

Ty = (1-B) ? + k) | Sis (3.7)

Vip

The viscoelastic contribution to the kinetic energy equation is then modeled using the
turbulent viscoelastic viscosity in the form of a production term:

Ok + u;0;k = Py + Ptp —e+ 6]' [(l/ + I/t) 6J-kt] (38)
with

Ptp = thS2 - (39)
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4. Channel flow predictions

The calibration and validation of our model is based on our database of viscoelastic
DNS runs performed in a channel flow at Rep; = 5000, described in Table 1. These
runs cover most of the physical parameters for realistic polymer simulations. The three
constants entering the model v? — f — p are adjusted using run 1 (LDR, DR=35%) and 3
(HDR, DR=60%) only. The mean velocity profiles for these two runs (Fig. 7) are found to
exhibit the expected behavior, namely a shift of the log-law for LDR and the right change
of slope for HDR. The mean polymer elongation is overestimated, however, v2 — f — p
captures the maximum away from the wall, critical feature of HDR. The kinetic energy
and wall-normal velocity fluctuations are also overpredicted, nevertheless they are shown
to decrease with increasing DR. Finally the comparison for the calibration runs and the
remaining runs is depicted in Fig. 8. The agreement is very good with DR, (%) predicted
with a £5% accuracy.

5. Conclusion and future work

The prediction of drag-reduced turbulent polymer flows has been shown to be within
reach using the v2 — f model. The current model v? — f — p is simple and robust:
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FIGURE 8. Comparison between v> — f — p (dark bars) and DNS for Ren = 5000 for various
relaxtion time and polymer length described in Tab. 1

only three additional constants and no ad-hoc wall functions are introduced. It proves
to accurately reproduce drag reductions computed from channel flow direct numerical
simulations. More importantly, the model predicts the right change of slope of the mean
velocity profile in the log-law region, for the first time without any direct assumption on
the slope change in the tuning of the coefficients.

The model is nevertheless at its very early stage. Although the results are extermely
encouraging, the closure for the production term of the polymer elongation transport
equation (Eq. 3.5) is not satisfactory, since it involves one arbitrary length scale and
there is no dependence on a turbulent time scale. The linearity in the closure for the
turbulent length scale also needs to to be investigated especially toward MDR. The
future work will include the development of a closure for the transport term for ¢;; and
the addition of the transport equation for the polymer concentration in order to simulate
turbulent boundary layers subject to injection of polymers from a slot.

The support of DARPA and its project manager, Dr. Lisa Porter, are gratefully ac-
knowledged. This work is sponsored by Defense Advanced Research Projects Agency,
Advanced Technology Office, Friction Drag Reduction Program, DARPA order No.:
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Flux corrected finite-volume scheme for
preserving scalar boundedness in large-eddy
simulations

By M. Herrmann, G. Blanquart, and V. Raman

1. Motivation and objectives

Large-Eddy Simulation (LES) has emerged as the next generation simulation tool
for handling industrially relevant turbulent reacting flows. Of particular interest is the
use of LES for modeling complex combustors used both in power-production and aircraft
engines (Ham et al. 2003; di Mare et al. 2004). Similarly, the chemical processing industry
deals with a variety of turbulent flows that involve interaction of mixing and reaction with
the final aim of controlling product selectivity and optimizing yield. As LES technique
moves from being an academic tool to a practical simulation strategy, robustness of the
LES solvers is a key issue to be answered. In low-mach number combustion, the staggered
representation of the primary variables combined with an energy conserving scheme for
the momentum equations has been shown to be a stable methodology for a wide variety of
flows (Morinishi et al. 1998). In spite of the vast advancement in solving the momentum
equations, the scalar transport equations that represent the species distribution inside
the geometry and is thus key to predicting combustor performance, have not been studied
in detail.

Numerical schemes for scalar transport equations are challenging from the viewpoint
of stability. The advection equation solved using central difference based schemes can
lead to oscillations and instabilities (Pierce 2001). To counter this problem, all known
explicit schemes use an upwind bias that reduces numerical oscillations. As can be ex-
pected, this upwind bias reduces the numerical accuracy of the scheme and leads to
artificial diffusion. In spite of this drawback, such schemes are widely used to their ro-
bust numerical stability. Many of these schemes suffer from one another drawback in
that the species values are not bounded. In principle, a scalar transport equation solved
using bounded initial and boundary conditions should preserve the boundedness (Pope
2000). In the present study, we consider the simulation of a conserved scalar, namely
mixture fraction. Common combustion models use mixture-fraction to parameterize all
species composition and is thus relevant to reactive flows. By definition, the solution to
the mixture-fraction transport equation should always be in the set [0,1]. The source
of error in low-mach number formulations come from the staggering of the velocity and
scalar variable locations. Usually, the velocity is defined at the cell-faces while the scalar
is defined at the cell center. To compute the face based fluxes, an interpolative scheme is
used based on a fixed stencil to obtain scalar values at the cell faces. Such interpolations
do not impose a constraint on the scalar bounds which lead to oscillations around the
local maximum and minimum values of the scalar.

Recently, a new class of schemes called Weighted Essentially Non-Oscillatory (WENO)
schemes have been introduced that devise a total variation bounded (TVB) non-oscillatory
scheme for advection type equations (Jiang & Peng 2000). Though these methods can be
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extended to higher-order accuracy, the interpolative coefficients need to be reconstructed
at each iterative loop. Again, extensions to complex unstructured grids are not straight-
forward and could be computationally expensive. In this work, a well-tested numerical
scheme for scalars, namely the Quadratic-Upwind biased Interpolative Convective scheme
(QUICK) (Leonard 1979) will be used. By switching between two interpolative functions,
it will be shown that scalar boundedness as well as reduced oscillatory nature can be en-
sured. In addition, through detailed analysis of the numerical errors, it will be illustrated
that the numerical accuracy is equivalent to the QUICK scheme.

2. Bounded QUICK scheme

It is known that a first-order upwind based interpolation is unconditionally bounded
(within CFL restrictions) but can lead to large dissipative errors. In this work, we utilize
the boundedness property of the first-order upwind scheme to formulate a dual valued
stencil for the scalar. Each time-step is split into two sub-steps that can be constructed as
a predictor-corrector algorithm. The predictor step moves the solution from the previous
time-step to a predicted step. Locally, in cells where the predicted scalar solution is
outside physical or acceptable boundaries, the interpolative scheme is switched to the
full first-order upwind scheme while the rest of the domain uses the original QUICK
stencil. Using this new stencil and the initial scalar field before the predictor step, the
corrector step advances the scalar field to the next time level. This modified method is
termed Bounded QUICK (BQUICK) scheme. In spite of the added local dissipation it
is observed that the overall accuracy is not degraded and that the the boundedness is
ensured to within velocity field divergence errors.

3. Numerical implementation

For clarity, the discussion in the following is limited to the one-dimensional case. Ex-
tension to two and three dimensions is straightforward.

The underlying numerical scheme of BQUICK is the original QUICK method (Leonard
1979) which has been implemented in both uniform and stretched grids. The advection
time-stepping consists of two sub-steps termed predictor and corrector steps. In the
predictor step the solution is advanced to the next time step using,

(1) WSS gp (¢ + A1), (3.1)

using cell face values ‘?5?71 , calculated with the original QUICK scheme. Then, in the
corrector step, all cells whose predicted values ¢P are outside their acceptable bounds
Gmin and ¢pax are discarded and recalculated using a first order approximation for the cell
face values ¢}_1 /2 and (ﬁ} 1/20 All other cell faces retain their values from the predictor
step. Figure 1 summarizes the algorithm of the BQUICK corrector step.

In practical LES computations, several sub-iterations are carried out in each time-step
iteration to ensure numerical stability. In such cases, the above predictor-corrector step
is executed in each sub-iteration with the initial scalar values determined by the field at
the previous sub-iteration. The next section describes numerical tests to illustrate the
performance and accuracy of the new scheme.
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for all control volumes V; do
@‘1—1/2 = ¢?—1/2
end for
for all control volumes V; do
if @7 > Pmax O ¢ < Pmin then {revert cell update to first order}
if ui—1/2 Z 0 then
¢;—1/2 = ¢?—1
else
¢a}—1/2 = ¢?
end if
if 'U/i+1/2 Z 0 then
¢;+1 /2 = o
else
¢;+1 /2 = ¢?+1
end if
end if

end for

FiGure 1. BQUICK corrector step.

4. Numerical tests

A series of tests are used to compare the new scheme with the original QUICK scheme
and, in order to make a comparison with TVB based schemes, a 3rd order WENO scheme.

4.1. 1D tests

To determine the order of accuracy, a sine wave function extending over a domain of
[0, 27] is convected using a constant velocity and imposing periodic boundary conditions.
Since the sine wave is a smooth function, numerical dispersion errors are minimized.
Two different functions are used to test the effect of sharper curves. The first test uses
as initial condition

Z(z) = % (sin (mz) +1). (4.1)

The simulations are carried out on increasing resolution up to a grid of 1024 points.
Using the exact solution, L1, Ly and L, errors in the predictions are computed. Table 1
shows the errors in each simulation for the three different numerical schemes. It is seen
from the Ly error that the BQUICK and QUICK scheme both show slightly more than
second order accuracy while the WENQO scheme shows more than 4th order accuracy.
The second function uses a sharper profile for the initial conditions.

Z(z) = sin* (). (4.2)

Table 2 shows the errors as well as the accuracy estimates for the different numerical
schemes. The QUICK and BQUICK scheme have retained second order accuracy for this
profile. In fact, the BQUICK scheme shows almost identical results as for the previous
test case. However, the WENOQO scheme shows a dramatic reduction in accuracy. The
order of the scheme has dropped from over 4 in the previous case to between 2.5-3.5. As
explained in the previous section, the WENQO scheme uses an arbitrary smoothness factor
that determines the extent of influence of the upwind biased correction. The weighting
factor is determined by the gradients at the location which increases the lower order flux
correction leading to reduction of the overall accuracy of the scheme.

Though the above test reveals the truncation error, scalar profiles in turbulent flow
are rarely smooth and involve strong gradients. To test such a scenario a canonical 1-D
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TABLE 1. Accuracy for Z(z) = ; (sin(mz) + 1)

Method N Ly error Lo order L; error L; order Ls error Lo order

Quick 128 1.07E-04 6.81E-05 6.69E-06

256 2.56E-05 2.06 1.63E-05 2.06 1.13E-06 2.56

512 6.33E-06 2.02 4.03E-06 2.02 1.98E-07 2.52

1024 1.58E-06 2.00 1.00E-06 2.00 3.49E-08 2.50
Bquick 128 1.15E-04 7.27TE-05 6.97E-06

256 2.85E-05 2.01 1.75E-05 2.06 1.18E-06 2.57

512 7.24E-06 1.98 4.27E-06 2.03 2.04E-07 2.53

1024 1.92E-06 1.92 1.05E-06 2.03 3.56E-08 2.52
WENO-3 128 7.00E-03 1.40E-03 2.10E-04

256 1.28E-03 2.45 1.61E-04 3.12 2.01E-05 3.39

512 8.94E-05 3.84 1.16E-05 3.80 8.84E-07 4.51

1024 3.11E-06 4.85 1.27E-06 3.19 4.45E-08 4.31

TABLE 2. Accuracy for Z(z) = sin(nz)

Method N Ly error L order L; error L; order L error Ls order

Quick 128 3.55E-03 1.81E-03 1.83E-04

256 6.54E-04 2.44 3.29E-04 2.46 2.38E-05 2.95

512 1.45E-04 2.18 7.20E-05 2.19 3.71E-06 2.68

1024 3.49E-05 2.05 1.73E-05 2.06 6.32E-07 2.55
BQuick 128 3.59E-03 1.77E-03 1.86E-04

256 6.51E-04 2.47 3.2TE-04 2.43 2.42E-05 2.94

512 1.45E-04 2.17 7.22E-05 2.18 3.74E-06 2.70

1024 3.49E-05 2.05 1.74E-05 2.05 6.34E-07 2.56
WENO-3 128 6.70E-02 1.49E-02 2.02E-03

256 2.41E-02 1.48 3.27E-03 2.19 4.06E-04 2.32

512 6.35E-03 1.92 5.15E-04 2.67 5.73E-05 2.83

1024 9.03E-04 2.81 5.35E-05 3.27 4.26E-06 3.75

convection Jiang & Shu (1996) problem is used. As initial conditions, a profile consist-
ing of several shapes with sharp gradients are distributed across the domain. A uniform
velocity field is imposed with periodic boundaries. A fourth-order Runge-Kutta based
time-integration is used to minimize temporal errors. The simulation is carried out for
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FIGURE 2. 1-D convection test case. Comparison of numerical schemes after 4 rotations. Lines
indicate exact result while symbols denote numerical computation.

4 rotations where each rotation is defined as the time taken for the initial profile to be
convected back to its initial location. Figure 2 compares the results from the QUICK,
BQUICK and WENO schemes. It can be seen that the QUICK scheme locally exceeds
the initial bounds of the scalar. In addition, it exhibits oscillations near regions of sharp
gradients. The BQUICK scheme on the other hand maintains the boundedness accu-
rately while also reducing the unphysical oscillations. Interestingly, the BQUICK scheme
performs better at capturing the peaks as compared to the WENO scheme. This clearly
illustrates the negative effects of TVB type damping of scalar fluctuations that are crucial
in LES simulations.
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FIGURE 3. Two-dimensional profile of the instantaneous mixture-fraction in a mixing-layer. The
top figure shows the QUICK results clipped between 0 and 1. The middle figure shows the
BQUICK results. The bottom figure shows the WENO results.

4.2. Mizing layer tests

The second set of tests consists of an actual multi-dimensional implementation of the
three schemes (QUICK, BQUICK and WENO). Two configurations are investigated:
a spatially evolving mixing layer using LES and a temporal mixing layer using DNS.
The equations for both of these simulations are solved in non-dimensional units using a
domain decomposition based parallel solver. Further details of the code as well as the
sub-filter models used (in the case of LES) can be found in Pierce (2001).

4.2.1. Spatial mizing layer

The inflow bulk velocities of the two streams are set to a ratio of 1:2.5 with laminar
profiles. A splitter plate initially divides the streams and the mixing layer starts at X=0.
The domain, including the splitter plate stretches for 80 units while the width is set at
20 units. Figure 3 shows the instantaneous scalar concentration using the three schemes.
The QUICK scalar field has been clipped between 0 and 1 while the BQUICK and the
WENO scalar field maintain the bounds. Visually the differences between the QUICK
and BQUICK schemes are not noticeable. On the other hand the WENO scalar field is
smoother than the two other schemes. To better understand the effect of the BQUICK
scheme, crosswise scalar profiles are plotted (Fig. 4). It is seen that the BQUICK main-
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FIGURE 4. Cross-stream profile of mixture fraction obtained in the mixing layer at an arbitrary
downstream location. Dashed lines show the QUICK profile, solid lines show the BQUICK profile
and, dotted lines show the WENO profile.

tains the same profile as the QUICK scheme away from the bounds of the scalar while
closer to 0 and 1, the BQUICK adjusts itself to maintain the bounds. The WENO profile
is also bounded but it is much smoother than the BQUICK profile and does not show
the same scalar gradient. The lower-order correction for the BQUICK at the bounds in
composition space has limited impact on the physical transport. To further substanti-
ate this argument, time-averaged profiles of both the scalar as well as the scalar RMS
value are plotted in Fig. 5. Increased numerical diffusion will reduce the RMS fluctu-
ations. However, the profiles indicate that the BQUICK correction has no substantial
effect on the accuracy of the scheme. The upwind correction does not lead to substantial
numerical diffusion that is characteristic of the first-order upwind scheme. As such, the
corrections are applied in a very small fraction of the computational domain and hence
the RMS fluctuations are not damped by dispersion errors. On the other hand the time-
averaged WENO profile of scalar RMS shows much more dissipation than the BQUICK
scheme: the RMS fluctuations of the scalar are damped by about 20% compared to the
QUICK/BQUICK RMS fluctuations.

4.2.2. Temporal mizing layer

The computational domain used for the simulation of the temporal mixing layer was
initially divided into two streams separated by an interface located at Y = 0. The initial
mean velocity distribution is given by a hyperbolic tangent velocity profile. Three dimen-
sional perturbations with wavelength of up to a quarter of the domain length were super-
imposed on the mean velocity profile. The different variables were non-dimensionalized
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0.4

FIGURE 5. Time-averaged cross-stream profile of mixture-fraction obtained in the mixing layer at
an arbitrary downstream location. Dashed lines show QUICK profiles, solid lines show BQUICK
profiles and, dotted lines show WENO profiles.

using the initial vorticity thickness (4,,) and the mean velocity difference between the two
streams. Based on these definitions, the initial Reynolds number was Re, o = 435. The
simulation was performed on a grid with 256 x 256 x 256 control volumes. Figure 6 shows
the one-dimensional streamwise energy spectrum of the streamwise velocity component
at t = 92. For reference, the slope of the inertial range is indicated. The energy spectrum
is in good agreement with previous work (Vreman 1995).

To better isolate the effect of numerical dissipation by the different schemes, the scalar
transport equation was solved without molecular diffusion. In such a configuration the
energy cascade still occurs but the energy should not be dissipated at the lowest length
scales. However numerical dissipation introduced by the schemes will prevent the energy
from piling up at the smallest length scales. Figure 7 shows the one-dimensional energy
spectra of the scalars. The inertial range is accurately captured by the three schemes.
However numerical dissipation damps out the energy at the highest wave numbers. As
is can be observed, the WENO scheme introduces more numerical dissipation than the
QUICK and BQUICK schemes. This result can be further ascertained by considering the
RMS fluctuations of the scalar (Fig. 8). The upwind correction of the BQUICK scheme
has little effect on the RMS fluctuations. Once again the fraction of computational domain
where the correction is applied is very small. On the other hand the WENO profile shows
lower RMS value (of about 15%) compared to QUICK/BQUICK profiles. The additional
numerical dissipation introduced by the the WENO scheme also affects the shape of the
material interface. The WENQO scheme does not only dissipate more than the BQUICK
scheme it also reduces the total surface area of the interface. Figure 9 show the iso-surface
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FIGURE 6. One-dimensional (planar averaged) streamwise energy spectrum of the streamwise
velocity component at Y =0 (¢t = 92).
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FIGURE 7. One-dimensional (planar averaged) streamwise energy spectrum at ¥ = 0 and
t = 92 of the QUICK scalar (squares), the BQUICK scalar (crosses) and WENO scalar
(circles).

Z = 0.5 for the BQUICK and WENO schemes. It is seen that the WENO does not show
the small structures as the BQUICK scheme does. As a consequence this scheme is not
able to capture small packets of low mixture fraction surrounded by high mixture fraction
and vice versa. Consistent resolution of these situations will have a significant impact in
increasing the predictive capability of LES.
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FIGURE 8. Plane averaged cross-stream profiles of mixture fraction obtained in the mixing layer
at Y = 0 and t = 92. Dashed lines show QUICK profile, solid lines show BQUICK profile and,
dotted lines show WENO profile.

FIGURE 9. Iso-surface Z = 0.5 at t = 46 for the BQUICK scalar field (left) and the WENO
scalar field (right).

5. Conclusion

In conclusion, these tests have clearly shown that the flux-corrected third-order scheme,
BQUICK, is clearly superior to TVB based formulations or the original QUICK scheme
without scalar bounds. This new scheme will be especially useful in combustion simu-
lations with lean fuel mixture. The low stoichiometric mixture fraction associated with
such fuel mixtures leads to very strong density gradients in the mixture-fraction space
close to mixture-fraction value of 0. The QUICK scheme leads to extended excursions
below 0 that can cause large and unphysical temporal change of density. This feeds it-
self into the continuity equation thereby leading to algorithmic instability. The BQUICK
scheme has been successfully implemented in constant and variable density flows for both
structured and unstructured grid based LES solvers. Preliminary calculations follow the
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same trend as the simulations shown here. Results from this work will be communicated
in the near future.
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Stability for the Wall-Pierce-Moin implicit scheme

By B. Gustafsson |

1. Motivation and Objectives

Explicit schemes are not well suited for simulation of low Mach number flow, due to
the severe restriction on the time-step. Implicit schemes on the other hand, give rise to
large non-linear systems coupling all dependent variables. Iterative methods have to be
used for solving these systems, but iteration to full convergence in each time-step may be
time-consuming. One way to reduce the work, is to limit the number of iterations, such
that the system is not fully solved, but still has a reasonable accuracy. Sometimes such
a method is called semi-implicit.

In Wall et al. (2002) a new method for the Navier-Stokes equations was introduced. Tt
uses a staggered grid as suggested in Pierce (2001), and it is semi-implicit in the sense
mentioned above. There is a stability analysis in Wall et al. (2002) for the simplified
case where the system has been reduced to the acoustic wave equation with constant
speed of sound and periodic solutions on a uniform staggered grid. In this analysis, it is
assumed that the system of equations is solved exactly in each step, i.e., the fully implicit
scheme is analyzed. It is shown that the scheme is not only unconditionally stable, but
also energy conserving in the sense that the Fourier modes are propagated without any
change in magnitude.

The purpose with this paper is to generalize the stability analysis for the fully implicit
scheme in two ways. The first generalization is that we allow for nonzero advective
velocity. The second one is that we start from the full non-linear difference scheme,
and linearize from there. We will assume constant coefficients, and use Fourier analysis
to prove unconditional stability and energy conservation even in this case.

2. The model equation and the linearization
The simplified model problem is obtained by disregarding the viscous terms, and sub-
stitute the enthalpy equation by an equation of state p = p(p) connecting the density
p and the pressure p. With u denoting the advective velocity, the system of differential
equations is
gt + (puz)z +p: =0,
147 + 9z = 07

where g = pu and p = p(p). The speed of sound a is defined by a? = dp/dp. The system
can be expressed in terms of the two variables g and p. With

U— [ Z] R = [ gz/p;p(p) ] ’

we have
U + (F(U)):c =0.

t Department of Scientific Computing, Uppsala University, Sweden
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FIGURE 1. The staggered grid and the computational stencil

Let U' = (g, p')T be a perturbation around the state U = [g, p]T. The linearized system
is obtained as

F
U; + Z—UU; =0, (2.1)

where the Jacobian matrix is given by

OF _[29/p —g*/p"+a® | _[2u o’
oUu 1 0 11 0 )

The eigenvalues of 0F/0U are u =+ a.

For the discretization on the staggered grid, we use here a slightly different notation
compared to Wall et al. (2002), such that subscripts and superscripts denote the location
of the variables, see Fig 1. The notation is

02 = (@, tgr ) = g(iAz, (n+1/2)At),
Pivije = P(Tit1y2, tn) = p((i + 1/2)Az, nAt).

For averages, the sub/super-scripts denote the location where the average is centered.
For example,

1

_nt1/2

p;l / = Z(p?.:_ll/z + P?j11/2 + p?+1/2 + p?—1/2)
denotes the average centered at (z;, tny1/2), see Fig 2.

With A = At/Az, the scheme is

+1/2 ~1/2 _ _ _ _
9 /2 9 2+ ’\(9?+1/2“?+1/2 - 9?—1/2“?—1/2)
A _ _
+ O + 20T 2+ P = Py = 29712 =PI j) = 0, (2.2)

— n—1/2 n—1/2
PP1y2 = PET s + A gt =0.
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FIGURE 2. The average for p

Here
n+1/2 n+1/2
ﬂ?‘i‘l/Q = +1 +1 = n n + +1 +1 : n n
pz'n+3/2 + p?+1/2 + Pitse T Pty p?+1/2 + pin—1/2 t P01 TP
gn+—11/2 gn—1/2
i 4
+
n—1 n—1 n—1 n—1
Piysss T Piy12 T Piyass T Pix1sa  Pivija T P12 T Pi1ya T Pii1)o

_ 1, nt1/2 0 ny1/2 0 n—1/2 | n—1/2
Thae = g+ g 4 gl 4 g,

and p = p(pk) for all j, k.

We make a few remarks concerning the method (2.2).

We first note that the second equation by itself is explicit. However, the first equation
involves not only the ¢g”t/2-values, but also the p"*!-values via the p"*!- and @"-
expressions. This means that the scheme is fully implicit in the sense that the solution
{g”+1/ 2 p"*1} at the highest time level is coupled across several points in space, and
depends on all the values behind.

Secondly we note that (2.2) is effectively a one-step scheme, even if the first equation
couples three time levels for p. It is easily seen by the fact that only one level for each
of the variables p and g are required to start the scheme. Assume that p® and ¢'/2 are
known. The second equation is first advanced one step providing the p'-values. After
that we let n = 2 in the second equation and couple it to the first equation with n = 1.
This provides the p*- and ¢3/?-values, and the scheme is then advanced by stepping up
n and repeating the last part of the algorithm.

We next turn to the linearization. As seen in Fig 1, there are 18 different variables
occuring in the discrete equations, and by lining them up in a vector V, the scheme can
be written in the form G(V') = 0. Then the linearized equations are

oG

In the evaluation of the Jacobian 0G/dV, it is assumed that all values are independent
of z and ¢, such that

9t =g, ul=u, dp/dplin=ad
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for all 4, n. As an example, we get

0 _ _ 6??4.1/2 _ _ 8Hn+1/2 1 1 U
— iz O oW 2) = o Ui Y Tt i = YIS = 5
99i11 99;41 99i41 P

For completeness we list all the derivatives for the convection term, the other ones are
simpler.

=N =N =N n
9iv1/2%i51/2 Yi—1/2%i—1/2

8/691-":11/2 u/2 0
8/0gm " w2 u/2
8/dgr > 0 u/2
8/6923:11/2 u/2 0
8/ag™* w2 u/2
0/9g75"* 0 u/2
8/opty,  —u?/16 0
8/3p s —u?/8 —u?/16
6/8p?f1/2 —u?/16 —u?/8
8/8pi ™y, 0 —u?/16
8/0p} 35 —u?/8 0
0/0p}1 s —u?/4 —u?/8
8/0p} /s —u?/8 —u?/4
0100 4y O —u?/8
3/3[)?_;31{2 —u?/16 0
8/8p;‘+_1{2 —u?/8 —u?/16
8/8p?__11/2 —u?/16 —u?/8
8/0p1 s 0 /16

We drop the ' notation for the new variables, and arrive at the complete linearized
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)\_u( nbl/2_ ontif2)
i1 i1

Au® +1 +1 +1 +1 Aa? +1 +1
- F(p?+3/2 + p?+1/2 - p?—l/z - p?—s/z) + T(p?+1/2 - p?—l/z)

n—1/2 AU, n_1/2  n-1/2
—gr (9i+1/ _gifl/ )
2

Au Aa?
- T(P?-w/z + P12 = Picija — Pi-zj2) + T(P?-H/z = Piz12)

/\u2 n—1 n—1 n—1 n—1 )\a2 n—1 n—1 =0
- ﬁ(pi+3/2 tPiyis2 ~Pic1y2 T pi—3/2) + T(pi+1/2 - pi—1/2) =Y

n—1/2 n—1/2 —
Ag; /2 9i—1 2 + 052~ P?711/2 =0.

Here A, u, a are all constants. Note that the system is consistent with the linear system
(2.1).

3. Stability analysis
For the stability analysis, we Fourier transform the system by substituting
g?+1/2 = gnt1/2eiwei ete. . With € = wAz, we get

Au? A
(14 Auisin€)gn+/2 — %i(sin g + sin 3;)ﬁ"+1 + §a2i sin gﬁ"“
,  Au?
+ (=1 + uisin £)§n—1/2 — %i(sin g + sin %) 5 + AaZisin gﬁ”
(3.1)
Au? A
— %i(sing + sin 32—€)ﬁ"‘1 + §a2isin gﬁ"_l =0,
2Xi singm_lﬂ +p"—pn T =0.
Let
f/" B [ gn71/2 :|
= P )
With the notation
$1 :sing, sy =siné, 33:sin7,
the system can be written in two-step form
Q"+ iV +QoV™ ! =0, (3.2)
where
Q5 = [ 1+ Auisy —%i[(sl + s3)u? — 4s1a?] ]
0 0 ’
0, = [ —1+4 uisy —3i[(s1 + s3)u? — 4s1a?]
| 2Xis 1 :
QO = [ 0 _%'L[(Sl + S3)U2 — 451&2] :|
0 -1 ’
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Looking for the amplification factor z of this two-step scheme, we substitute yn = z”V,
and put the determinant equal to zero. We get

Det(Q22” + Q12 + Qo)

(14 Muisz)2? + (=14 Auisz)z  —3i[(s1 + s3)u? — 4s1a?] (2% + 22 + 1)
2Xis12 z—1
% .
=[2% — 2+ (2% + 2) \uiss](z — 1) — Zslz[(sl + s3)u® —4s1a%](z +1)2 = 0.

= Det

One root is zero. The reason for this is that for convenience we have included §"—3/2

in the two-step form (3.2), but it is not present in the equations (3.1). (If §=3/2 would
be given a non-zero value at the start, it would never show up in the computation.)
Furthermore, since we have a one-step scheme for two variables p and g as explained
above, there are only two remaining roots z.

In order to find these remaining roots, we substitute

2

A
a=Ausy, 3= Zsl[(sl + s3)u? — 4s1a%],

and obtain

5 1+28 1—ia—p3
27 =2 - z - =
1+ia—p 1+ia—0

’

with the solutions

z:1+ﬂi\/4ﬁ—a2

1+ia—p

)

where
48 — o? = N?[(s7 + s183 — s2)u® — 4s7a?].

The coefficient multiplying u? is identically zero, which is seen by introducing the notation
0 = £/2 and expanding:

8% + s183 — S% — _Z[(ew _ 6719)2 + (ew _ 6719)(6319 _ 67319) _ (6210 _ 672’0)2]
— _i(ezia —24 efzia + e4i9 _ efzie _ e2i9 + 6741'9 _ e4i0 +2— 6741'9) =0.

Hence, 48 — o? = —4)\25%2a2 < 0, and

|z|2:|1+,8:1:i\/a2—4ﬂ|2: 1+2ﬂ+ﬂ2+a2—4ﬂ:1
1-8+ia 1-28+4 02+ a2

The only possibility for a multiple root z is 43 —a? = 0, i.e., & = 0, but this is the trivial
case with a constant solution being forwarded without any change. Hence, we have shown
unconditional stability. Furthermore, we note that both roots of the characteristic equa-
tion have modulus one, which means that there is energy conservation for the periodic
case.

4. Future plans

The analysis above is done for a quite simplified case, and for generalization there are
several directions to go:
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¢ Analyze the effect of not solving the equations to full convergence in each time-step
(making the scheme “semi-implicit”).

e Introduce non-periodic boundary conditions.

e Include also the enthalpy equation in the analysis.

e Treat the multidimensional case.

The first item is important, but very difficult if applied to the full system. An analysis
of a simpler model problem could give some indications.

Regarding the non-periodic boundary conditions, there is first of all a question of how
to impose the boundary conditions for the full system of differential equations. For solid
walls, the conditions are given on physical grounds, but for open boundaries there are
still many difficulties to overcome. Furthermore, the method analyzed here has a quite
wide computational stencil as illustrated by Fig 1. Therefore, extra numerical boundary
conditions must be constructed in order to get the algebraic system well defined at each
time level. Stability has to be secured, but in addition, a special challenge here would be
to keep energy conservation in the case this holds for the system of differential equations.
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A formulation of incompressible Navier-Stokes
equations in a quasi-generalized coordinate system

By D. You AND M. Wang

1. Motivation and objectives

In large-eddy simulation (LES) of flows in complex geometries, the generation of a high
quality mesh and the large memory requirement for the metric quantities of coordinate
transformation are often major obstacles, when a three-dimensional structured, body-
fitted mesh is employed. The problem is particularly severe for flow solvers employing
the staggered mesh arrangement, which is strongly preferred in non-dissipative LES codes
for stability and discrete energy conservation (e.g. Mittal & Moin 1997; Nagarajan, Lele &
Ferziger 2003). For instance, at least 80 (8 positions with 10 variables (metric coefficients
plus Jacobian) per mesh element) three-dimensional arrays are required, compared to
10 three-dimensional arrays for collocated meshes. This makes LES impractical on large
grids. In addition, the increase of partial derivative terms in the transformed governing
equations cause a significant increase in computational cost.

On the other hand, many geometries in engineering and scientific applications can
be handled using a two-dimensional curvilinear mesh with mild variations along the
remaining third direction. Frequently observed variations are shift, rotation, magnifica-
tion/contraction, and skewing of the curvilinear plane along a perpendicular direction to
that plane. The airplane wing is an example of the shift and contraction of the airfoil
section, and the axial compressor or turbine blades are observed to be twisted along the
radial direction maintaining the blade section profile.

The objective of this study is to exploit these geometric simplification in the design of
a numerical method, which is applicable to a wide class of problems while minimizing the
memory requirement and computational cost. To this end, a formulation of incompressible
Navier-Stokes equations based on a quasi-generalized coordinate system which consists of
two-dimensional generalized curvilinear coordinates and a reasonably smooth variation
along the perpendicular remaining direction is proposed. Using such an approach, one can
efficiently treat geometric difficulties, and, at the same time, alleviate problems associated
with a fully generalized coordinate transformation.

The incompressible Navier-Stokes equations are transformed to present a quasi-general-
ized coordinate system in Section 2. Then, in Section 3, formulae for some example
geometric variations and the corresponding metric coefficients and Jacobians are given.
In Section 4, an implementation of the present formulation is evaluated by considering
the flow over a tapered circular cylinder, and this is followed by a brief summary in
Section 5.

2. Transformation of governing equations

The incompressible Navier-Stokes equations based on Cartesian coordinates are as
follows:

Ou; 0 Op 1 0 Ou

7 UiU; =

2 I Al 2.1
ot oz oz " Re dz; Oz’ 2.1)
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FIGURE 1. Schematic diagram of coordinate transformation from Cartesian coordinates to curvi-
linear coordinates. Note that planes perpendicular to the third direction (773) are required to be
parallel.

3ui -
5r. =0 (2.2)

All the coordinate variables, velocity components, and pressure are nondimensionalized
by the length scale L, the reference velocity Uy, and pref, respectively. The time is
normalized by L/Uy.f.
Equations (2.1) and (2.2) can be rewritten in the conservative form in a generalized
coordinate system as
aq’
ot

=—N'(q) - G'(p) + L'(q), (2.3)

D'¢' =0, (2.4)
where q = (¢*, ¢%,¢%), N is the nonlinear convection term, G*(p) is the pressure gradi-
ent term, and L' represents the diffusion term, respectively. D* denotes the divergence
operator. Generalized coordinates are introduced in figure 1 as

(.’L’l,.’[]g, x3; U1, ’LL2,’U,3) - (77177727 773, q17 q27 q3) (25)

The variable ¢’ is the volume flux across the faces of the cells, which is equivalent to
the contravariant velocity components on a staggered grid multiplied by the Jacobian
of the coordinate transformation. Then, the terms in (2.3) are expressed in generalized
coordinates as

) 1 . 1 )

Ni(q) = =7t =— =cg"¢ 2.6
(a) T m g 7T (2.6)
i) = oid 2P

G'(p) =« o’ (2.7)

1, 0 ,.1 01
Li(q) = =7}, =—ak — — — ¢! 2.8
(a) T Regp 749 (2.8)

where

¢ =Yk, ), =0x;/onk, A =J(H, =T,
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1
and J= (||c;”c;€”|\)2 for 7.k, l,m,n=1,2,3.

When the fully three-dimensional curvilinear coordinate system is used, the number of
partial derivative terms in the transformed governing equations and the required memory
for three-dimensional metric coeflicients and Jacobians severely limit the applicability of
this approach to a relatively small number of mesh points. Here, we propose an approach
which drastically reduces the memory requirement and computational cost by imposing
a constraint which requires the planes to be parallel along a perpendicular direction
(n® direction in the present formulation). This results in ¢§ = ¢3 = 7§ = 75 = 0.
With these vanishing metric quantities, a significant reduction of derivative terms in
the transformed Navier-Stokes equations, compared to the equations in a fully three-
dimensional generalized curvilinear coordinate system, is obtained:

a1 401 1,01 L (a4 g 4l
at_ J 8JJ qq 728JJ qq 383J01q CQq ng
=0
- Op
ij 9P
+a B
1iakj611l1iakj Loy
TINGEY Y 7T T T g 7Y
1 .0 . 1
+= §8— by 8—7(c?q1+c§q2+c§q3), (2.9)
=0
fori=1,2, and j,k, 01 =1,2,3, and
6q3 13‘91 '13‘912193‘13a 3.1 3 3\ j
o - 77 Yoni 7 ad" ¢ _jVQﬁjckq q —3733—3(01q + ¢5q” +c39°)g
=0 =0 =0
-8p
35 &
+a B
1 30 4; 01, 130 15
+j%8—n’“a Va—njjczq +3726—nk o7 7G4
-0 =0
1 450 ki, 1 51, 392, 33 :
—s —— — = fi k,l=1,2,3. 2.10
+J73anka 8 J(Clq +C2q +C3q )7 or j,r, ) Ly ( )
=0

The total number of derivative terms is only about one half of that in the fully generalized
curvilinear coordinate system.

Compared to the formulation with two-dimensional generalized curvilinear coordinates
and a nonuniform Cartesian third direction (e.g. You et al. 2004), the above formulation
which allows the third coordinate to be mildly curvilinear does not change the compu-
tational cost significantly, since the computations needed for both approaches are based
on a fractional-step method. The computational cost is dominated by the inversions of
factored matrices and multigrid operations for solving the pressure Poisson equation,
which are not much altered by this change.

The three-dimensional metric coefficients in the present coordinates can be expressed as
products of metric coefficients in a two-dimensional plane and one- dimensmnal functions
along its perpendicular direction, with decoupled Jacobians J = (ctc3 — che?)2 3. These
decoupled metric coefficients and Jacobians, with smooth variations of the plane mesh
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along the perpendicular third direction, as exemplified in the following section, result in
a significant reduction of required memory.

3. Plane variations and metric coefficients

In this section, we present several examples of grid topology in which variations along
one direction is given by an algebraic relationship. Note that non-algebraic but smooth
variations are also allowed in the present formulation, as long as the mesh planes per-
pendicular to that direction are parallel to one another. In addition, more flexibility in
the geometry can be achieved by combining some of the variations.

(a) Shift (Fig. 2(a))

J— S
{xli,j,k =21 41 + Ly,

R S
T2 5k = T2 50 T Ty

(b) Magnification/Contraction (Fig. 2(b))

L1, 50 = ak(xli,j,l - Ilim,jm,l) + Llim,jm,1
L2; 56 = bk(:EQi,j,l - xzim,jm,l) + L2 jm, 19

(¢) Rotation (Fig. 2(c))

r1,;, = COS (bk(xli,j,l — ;Clmjnl) — sin (;519(.%'21.1%1 — szmﬂ,l) + Tlir jrn
L2, ik = sin ¢k (Ili,j,l - xlir,jr,l) =+ cos ¢k(x2i,j,l - x2ir,j7‘,1) + L2 im1s

(d) Skewing to z; direction (Fig. 2(d))

_ 2
Ll = (I2i,j,1 - in,js,l)tan Py T T1; 5,
_ 2
L2 i = (‘Tzi,j,l - x2i,js,1)(1 + tan S%k) + T2, js19

(e) Skewing to zo direction (Fig. 2(e))

T1; 0 — L1, 4
20k 7,1
{IQi,j,k = (z1,,, =71, ;) tanpy, + 2, ;.

In the formulae (a)-(e), i), I the amount of shift in 1 (z2) direction. T1(2),0
T1(2),, 5000 T2 010 and z1,, ;, denote reference points for magnification, rotation, and
skewing variations in x; and xo directions, respectively. ar and by are the magnifica-
tion/contraction factors in z; and z, directions, while ¢y, ¢, , and ¢, are the rotation
and skewing angles. Other needed formulae can also be derived to meet any geometric
need.

These algebraic variations, as well as combinations of the variations, result in not only
geometric flexibility but also decoupled metric coefficients, which allow a great reduction
of memory. For example, the magnification and rotation operations can be combined
using formulae (b) and (c) to give

1 2 3 4 5

L1, 500 = Pl 51 +pkxlir,j7‘,1 +pkx1im,jm,l +pkx2i,j,l +pkx2ir,jr,l
_ 0 7 3 9 10

T2 5k = PkT1 50 T PiTlip e T Pk%2i 51+ PeT2ir jr1 + Pl T2 jm 1 s
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FIGURE 2. Examples of algebraic functions applicable in the proposed formulation: (a) shift; (b)
magnification/contraction; (c) rotation; (d) skewing to z1 direction; (e) skewing to x2 direction.

where
pi = ar(1 + cos ¢y,) Py = aysin gy,
pi = —ay, COS Py, pz = —ay Sin ¢,
pi=1—ay Py = br(1 + cos ¢r,)
pi = —bk sin (bk pz = —bk COS gf)k
pizbksin@C p,lcozl—bk.

In this example, the metric coefficients for the coordinate transformation become

Oxy|, ., _ 10z, | 40z | .

ont lijk = Dy ont lij1 + P ont li,j,1

Ox1|. . _ 10z, . 4 0x2|. .

o2 lijk = pklan_z lija+ plg o2 lija
Pk

omy| Op Opj 9Py 9y
o3 |z,g,/€ = o’ L1551 + an3 L1y jra + an3 L, jm 1 + on3 L2 51 + ans3 L2ir jr,1s
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FIGURE 3. A twisted compressor blade generated by mesh rotation and skewing: (a)
compressor blade; (b) mesh around the blade.
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FIGURE 4. An airplane wing generated by contraction and shift: (a) airplane wing; (b) mesh

around the wing.

Oxo|  _ 60Ty | 8 Owa | .

ont lijk = Py, ont lija + Pk ont li,j,1

Oxo|  _ 60x1| | 8 Owa | .

an? lijk = Dk a2 li.j.1 + Dy an? li.j.1
7

oy - _ O opj Opy,
an3 |1>]7k - o3 L4, + an’3 Llir jra + on3

oz

577? lije =0

[2)

af,g |i1j>k =0
6903|. o Oz,
on3 W7,k — o3 *

Bp}co

Ipy,
x2i,j,1 + 8773 x2i7‘,jn1 + 8773 x2i7n,j7n,17

Any metric coefficients and Jacobians can be expressed as multiples of those in the
base grid at £ = 1 and variational functions along the k-direction. This results in a great
reduction of computational memory requirements with a small increase in computational

operations.
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FIGURE 5. (a) Flow configuration and (b) computational grid in a base z — y plane for
numerical simulation of flow over a tapered circular cylinder.

Figures 3 and 4 are examples of the geometries which can be represented using the
present formulation. Figure 3 shows a compressor blade which is twisted along the blade
span while the blade cross-section profile is maintained. For this geometry, the base mesh
is rotated and skewed along the blade wall normal direction with angles of up to 30°,
and the skewing allows a periodic boundary condition to be applied in that direction in
a simulation of flow in a blade passage. An airplane wing can be meshed by contraction
and shift operations of the base grid, as shown in Fig. 4.

Enhanced geometric flexibility can be achieved by combining partially or approxi-
mately body-fitted meshes with an immersed boundary method. This method has been
successfully applied to the rotor tip-clearance flow found in axial turbomachines (You
et al. 2004).

4. Implementation and evaluation

Numerical simulation of vortex shedding behind a linearly tapered cylinder is per-
formed to evaluate the present methodology and implementation. The configuration,
shown in Fig 5(a), is the same as that studied experimentally by Piccirillo & Van Atta
(1993). The taper ratio, Ry = L/(D2 — D7), is set to 50, where L is the cylinder length,
and D7 and D- are the diameters of the small and large ends of the cylinder, respectively.
The Reynolds numbers based on the diameters and freestream velocity are 60 and 180
at the small and large ends, respectively.

The base grid of 257 x 257 mesh points is shown in Fig. 5(b), and parallel mesh planes
are generated along the perpendicular spanwise direction by contraction and expansion
operations. 33 points are allocated uniformly along the span. A uniform laminar inflow
is used and convective and no-stress boundary conditions are employed at the exit and
each side wall, respectively. About 110 seconds on 4 CPUs of SGI Origin 300 are used
per time step, and this is only about 10% more than that measured by the solver based
on the two-dimensional generalized curvilinear coordinate coupled with a straight third
direction and with the same number of mesh points.

Figure 6 shows snap-shots of instantaneous vortical structures behind the tapered
cylinder observed in both experiments (Piccirillo & Van Atta 1993) and the present
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(a)

FIGURE 6. Instantaneous vortical structures behind a tapered circular cylinder: (a) water tunnel
flow visualization (Piccirillo & Van Atta 1993); (b) A2 vortex identification from computational
results.
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FIGURE 7. (a) Time-history and (b) frequency energy-spectrum of the vertical velocity at
:l’/Dz = 1,y/D2 = 0, Z/D2 = 13.5.

numerical simulation. The oblique vortex shedding is a hallmark of this flow observed
experimentally, and the present numerical approach is shown to capture this phenomenon.
In contrast to the laminar vortex shedding observed behind a straight cylinder, phase
differences of the vortex shedding along the spanwise direction is clearly observed, and
this complicates the downstream vortical structures. This phase difference accelerates
the decay of downstream vortices due to enhanced mixing.

Figure 7 shows a typical velocity time-history and its auto-spectrum as a function of
nondimensional frequency. The main Strouhal number is 0.203, which in good agreement
with the experimental result (fDs/Us, = 0.204) of Piccirillo & Van Atta (1993).

5. Summary

The incompressible Navier-Stokes equations have been formulated in a two-dimensional,
generalized curvilinear coordinate system complemented by a third coordinate which
varies smoothly. By requiring all the two-dimensional planes to be parallel in the per-
pendicular direction, the proposed approach significantly improves the geometric capa-
bility needed for treating complex flows. In particular, it alleviates the huge memory
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FIGURE 8. Schematic diagram of coordinate transformation from Cylindrical coordinates to
curvilinear coordinates. Note that planes along the third directions (r) are aligned in parallel.

requirement for metric coefficients and Jacobians in the use of structured meshes for
fully three-dimensional geometries. The formulation can be easily adapted to an existing
solver based on a two-dimensional generalized coordinate system coupled with a Carte-
sian third direction, with only a small increase in computational cost.
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Appendix. Quasi-generalized cylindrical transformation

The proposed quasi-generalized coordinate formulation can be extended to a cylindrical
base coordinate system which can be particularly effective for treating rotating blades in
turbomachines. Using the following transformation (see Fig. 8)

(55175527553;77177727773) = (Z,ICOS¢,lSiH¢;(E,9,'f')

with the geometric constraint of z = z(z,0,r),l = I(r), and ¢ = ¢(x,6,r), we can
calculate the metric quantities as:
e o
¢ = A 3 3
i 4 4
Za Z0 Zr
— [~(sing)g. —(sing)gs (cos @)y — (Ising)g, | , (5.1)
(lcosd)p.  (lcos@)pg  (sin@)l,. + (I cosd)d,
and
R AT C I
W= B %

oo
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di dicos¢ —dising dising + dicos¢

= |d} d3cosg+dising dising —dicoso |, (5.2)
0 d3 cos ¢ d3 sin ¢
where
d]i d% dzls _l¢017‘ (¢02r - ¢7‘29)l ZOZT
d? d% dg 0 (¢129 - ¢9'ZI)Z (¢129 - QbGZz)l

The constant Ar or constant [ between each x — 6 or z — ¢ planes results in the decoupled
Jacobian (such that J = function(r) x function(z, 6)):

= U, (26002 — 2209). (5.4)

Geometric variation along the radial (r) direction can be implemented as considered in
Section 3 so that the memory requirement is kept small.

In addition, similarly to the quasi-generalized coordinates based on a Cartesian coordi-
nate system, the vanishing 73 and trigonometric relations significantly reduce the number
of partial derivative terms in the transformed governing equations. Here we consider the
equation for ¢ = 3 to illustrate how the geometric constraint reduces computational cost
compared to the fully generalized coordinate system.

6q3_181 41381,”4161

4 _ _ — __ __2 _ -3 kg
=0 =A
-3p
3j
+a 377]
1 3 9 kj 14
J 18— _jjclq
=0
o ) 1 1 0 .01
_3_k]__2l 3 kj,,_~ ~ 3.1
+J 25, Vo +J738 S U@nj 614, (5.5)

where the numbers of partial derivative terms in A can be significantly reduced by the
cancellation:

A= —%dg{% [(cos¢-ci +sing - c}) qk%qj} - %(bnjqjqk (—sing- e +cos¢-c}) }

1 o [ 1 1
= d3{8 - (l —¢’q ) — S0yl (020" + d0q” + drq”) } (5.6)

where j,k =1,2,3.

Similar cancellations can be achievable in the equations for ¢! and ¢?. Therefore, the
present quasi-generalized coordinate transformation also provides significantly reduced
number of partial derivative terms as well as lower memory requirement in the cylindrical-
base coordinates. However, it is worth to note that this reduction makes it difficult to
keep the governing equations in the (weak) conservative form (c.f. the Navier-Stokes
equations in cylindrical, non-curvilinear coordinates are expressed as non-conservative
forms).
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On LES outflow conditions for integrated
LES-RANS computations

By J. U. Schliiter AND X. Wu

1. Motivation and objectives

For the numerical prediction of turbulent flows of industrial relevance two approaches
are currently in use. One is based on the Reynolds-Averaged Navier Stokes (RANS) ap-
proach, which computes essentially an ensemble-average of the flow and uses a turbulence
model to approximate all scales of turbulence. The other approach is that of Large-Eddy
Simulations (LES), where the large scales of motion are resolved in time and space and
only the smallest scales are modeled. Although LES is considered the more accurate ap-
proach, its application to a number of flow applications is prohibited by the increased
computational costs. One way to combine both methods is the integrated LES-RANS ap-
proach, where two separate flow solvers, one RANS flow solver and one LES flow solver,
are executed simultaneously, each computing a portion of a given domain (Schliiter et al.
2003; Schliiter et al. 2004a). This approach has been used for the computation of flows
in gas turbines (Schliiter et al. 2004b; Schliiter et al. 2004c; Schliiter et al. 2004d). In
these previous studies of flows in complex geometries, the RANS domain is upstream of
the LES domain, and hence the LES has to use the RANS data to define its inflow.

For the following study we want to concentrate on the reverse case, where the LES
domain is upstream of the RANS domain. The RANS solver receives flow data from
the LES solver to define its inflow boundary conditions. In return, the upstream LES
solver has to receive flow information from the downstream RANS flow solver. This last
step is necessary in order to take into account the influence of the downstream flow
development onto the flow in the LES domain. In previous years, we have developed
LES outflow boundary conditions for integrated LES-RANS computations and tested
these using a structured LES flow solver (Schliiter et al. 2002; Schliiter et al. 2004e). It
has been demonstrated that the downstream flow can have a significant effect on the
upstream flow features, and we have shown that the previously developed method of
body forces can transfer the necessary flow information to the LES domain.

Here, we first recapitulate the method of body forces for integrated LES-RANS compu-
tations. We will then elaborate on the determination of the body force constant. Finally,
we will report the implementation and validation of this method for unstructured flow
solvers.

2. Body force method

In integrated LES-RANS computations we consider overlapping grids between the
upstream LES and the downstream RANS. In the LES portion of the overlap region we
can use virtual body forces to drive the LES solution to a RANS solution delivered by
the downstream flow solver. This body force is employed on the right hand side of the
momentum equations.
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F; (x) =0 (ﬂi,RANS (x) — Uj,LEs (X)) . (2.1)

In Eq.( 2.1) @; rans is the vector of target velocities obtained from the RANS compu-
tation, U; s is the vector of time-averaged velocities from the LES computation, and o
is a the body force constant.

This body force term is defined using a temporal mean velocity of the LES solution.
This temporal mean can be determined by a trailing time-window over which the LES
solution is time-averaged. This allows to correct the mean velocity of the LES solution
while allowing for temporal fluctuations due to fine scale turbulence. This preserves the
resolved turbulence in the body force volume.

The choice of o controls the characteristic response time of the LES solution to a
change in the outlet boundary condition. If ¢ tends to zero, the body force becomes
essentially ineffective resulting in a drift of the outflow mean velocity profile towards the
unforced solution. High values of ¢ lead to faster change to the desired velocity field, but
may lead to numerical instabilities.

3. Estimation of body force constant o

Previously, we gave a crude estimate for o from the bulk velocity and the length of the
forcing region (Schliiter et al. 2002). We now want to provide a more accurate estimate for
the choice of ¢. This is carried out using a 1D analysis of the stationary Euler equations:

ou ou Op

5 + u% =% + o({@)rans — (U)rEs) - (3.1)

To simplify the equation, we assume a zero pressure gradient and a constant convection
velocity up. Furthermore, we assume that the flow is stationary, which makes (@)1gs = u.
With (@)rans = u¢, the target velocity Eq. 3.1 becomes:

)
uBa—Z =o(u —u) . (3.2)

This ordinary differential equation can be solved analytically and leads to the following
expression for u:

u(z) = ug + (uo — ug) exp (—%m) (3.3)

with ug being the velocity at the beginning of the forcing region.
We now want to determine o so that at the end of the forcing region (z = lr) the
velocity difference is smaller than the relative error

o Jule) —ul

- (3.4)

Then, Eq. 3.3 leads to
O = B 1, (M) ) (3.5)
lF €U
Although this estimate for o ensures the accuracy of the approach for steady flows,
in truly unsteady coupled computations a higher value for ¢ should be used in order to
decrease the time-lag in which the flow solution adjusts to the target velocity obtained
from an unsteady downstream computation.
On the upper end, o is limited by numerical stability considerations. Here, it is useful
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FIGURE 1. Geometry of the pipe test-case
to write o as an inverse time-scale 77. The upper limit is then defined corresponding to

the CFL-condition:
1 Ug
={ = = 3.6
-~ () N (3.6)

with Azp being the size of the smallest cell in the forcing region and wu. is the local
convection velocity in this cell.

4. Assessment of body force constant

In the following section we want to assess the influence of this constant. For this
purpose we consider a pipe flow with diameter D, and length 5D. The virtual body force
is applied in a volume of length 2.5 D at the end of the pipe flow and is used to force the
flow to a solution which would not naturally occur in this flow. This setup corresponds
to the original investigation of the body force method (Schliiter et al. 2001).

For this investigation we use a structured LES flow solver (Pierce & Moin 1998). The
flow solver solves the filtered momentum equations with a low-Mach number assumption
on an axisymmetric structured mesh. A second-order finite-volume scheme on a stag-
gered grid is used (Akselvoll & Moin 1996). The subgrid stresses are approximated with
an eddy-viscosity approach. The eddy viscosity is determined by a dynamic procedure
(Germano et al. 1991; Moin et al 1991). For numerical purposes a convective boundary
condition is applied at the outlet plane of the LES domain.

The mesh for the pipe flow consists of 128 x32x 64 cells. We consider a laminar flow at
Reynolds-number Re = 1000 .

Fig. 2 shows the results for a series of computations. The solid-crossed line shows
the parabolic inlet profile corresponding to the solution of a fully-developed pipe flow.
Without forcing, this would be the solution at any downstream location in the pipe. The
circles denote an arbitrarily-chosen velocity profile, with the same mass flow rate as the
inlet profile, which is to be matched at the outlet. Considering these two velocity profiles
as the initial and the target velocity. For a desired accuracy of 1% (e = 0.01) this leads

to:
1.0 2.0 — 0.75]
L Y i I Y 41
Omin =55 ( 0.01-0.75 ) 05 (4.1)
and
1.0
O max — 50 =25.6 (42)
128

In order to show the robustness of the method to the choice of o, several computations
were performed with varying o. Fig. 2 shows that with increasing o the accordance of
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FIGURE 2. Laminar pipe flow: profiles of axial velocity at the outlet (/D = 5.0) in dependance
of body force constant o. Solid lines with crosses: inlet profile. Symbols: imposed profiles. All
other lines: LES solution at the outlet plane using different values of o.
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FIGURE 3. Laminar pipe flow: temporal development of body force in the outlet plane in
dependance of body force constant o.

the LES solution with the imposed profile improves. The solutions using o > o,;,, show
satisfactory results. Computations using a ¢ = 35.0 > omax resulted in a diverging
solution.

The temporal development of the body force dependent on the ¢ is shown in Fig. 3.
Here, the spatial average of the body force in the outlet plane is computed and nor-
malized with the bulk velocity and the diameter. Above the minimum ¢ the body force
converges to the same residual body force that is needed to uphold the enforced velocity

distribution. A higher body force allows the solution to converge in a shorter period of
time.
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5. Body force method for unstructured flow solvers

In order to prepare for integrated LES-RANS simulations of complex geometries, we
implemented and validated the body force method in the unstructured LES flow solver
CDP. Even though the underlying organization of an unstructured LES solver is more
complex than a structured LES code, the local nature of the definition of the bound-
ary treatment requires little additional work in for the porting process to unstructured
solvers.

The LES flow solver used for this study is the CDP code (Ham et al. 2003; Moin & Apte
2004). The filtered momentum equations are solved on a cell-centered unstructured mesh
and are second-order accurate. An implicit time-advancement is applied. The subgrid
stresses are modeled with a dynamic procedure.

We want to validate the flow solver and the body force method on a swirl flow. Swirl
is an important feature in combustor fluid dynamics, since it determines the mixing
behavior as well as the evolving pressure field in the combustor. Its complexity and
sensitivity to small changes makes it a challenging test-case.

The considered test-case corresponds to that of the experimental investigation of Del-
lenback et al. (Dellenback 1986; Dellenback et al. 1988). The geometry is a pipe with a
sudden axisymmetric expansion with a ratio in diameters of 1:2 leading to a area ratio of
1:4. The Reynolds-number is Re = 30,000 and the swirl number S = 0.6 with S defined
as:

R 9,-\ /-
1 Jo U)o (@)g dr
B e dr
where u, is the axial velocity component, ug the azimuthal velocity component, and R
the radius of the nozzle. The LES inflow in the simulation was generated by using a
swirling pipe flow database (Pierce & Moin 1998).

First, we will compute a reference LES solution using a computational domain suf-
ficiently large to simulate this flow. This geometry will reach from z/D = —-0.5 to
z/D = 10 with the origin of the coordinate system at the center of the expansion. The
comparison with experimental data will demonstrate the accuracy of the LES solver.

Then, we will compute a smaller domain by truncating the flow domain behind the
expansion at z/D = 1.5. We will show that this domain is not sufficiently large to
simulate this flow, since the influence of the outlet will disturb the flow solution.

Next, we will use a body force volume from z/D = 1.1 to /D = 1.5 to drive the LES
solution to the mean flow field as determined by the reference solution. We will show
that the body force method is able to simulate the effect of the downstream domain.

Two different methods are used to determine the time-averaged LES solution ; us
for Eq. 2.1. The first method uses an overall time-average using all available time-steps.
This is the most accurate description for @; s for a statistically steady flow. However,
we want to apply the integrated LES-RANS approach also to statistically unsteady flows.
Hence, we will also use an average over a trailing time-window to determine %; , x5, which
allows for unsteadiness in the target solution.

Figure 4 shows the results of the reference solution. The LES solution (solid lines)
matches well with the experimental data (symbols).

Figure 5 shows the axial velocity component for the simulations with the truncated
domain. We can see that the simulations using a truncated domain without the body
force (dashed lines) is disturbed by the proximity of the outflow and deviates from the
reference solution. Using a body force (dotted lines and dashed dotted lines) corrects this

(5.1)




112 J. U. Schliiter AND X. Wu

£ 1r
25F [
2F 0.8
15F
F 0.6
1E >
0sE go4
> E ¢
E Bo2
F % [
05 L
1: 0:
AsF 02f
2F r
E P N | L1 1 1 0.4 o T B,
0 1 2 3 4 0 0.2 04 06 0.8 1
X radial distance
1- 05
[ x=-05
08 0.4
2 I 2
s [ =
Sosf o3
> [ $
g | e
f=4 o x
> [
S04 x=20 co02
s [ - . E
02 0.1
x=0.75
AR ERENN NES WU RN SR | [
% 0.2 0.8 1 0

04 06
radial distance
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behavior and the solution tends towards the reference solution. We can also determine
that the use of a trailing time-window for the determination of %;xs is as accurate as
the use of the overall mean.
Figure 6 shows the tangential velocity component for these simulations. The effect of
the domain truncation and the correction using a body force are even more apparent.
The results demonstrate that the influence of the downstream flow development on
the upstream flow can be simulated using the body force method.

6. Conclusions

For integrated LES-RANS simulations the body force method has been previously
developed in order to modify the LES outflow to take the flow development downstream
of the LES domain into account.

Here, we gave an estimate for the body force constant o based on a 1D Euler analysis.
We tested the influence of the body force constant on a simple test-case. Furthermore, we
implemented the body force method into an unstructured LES solver. The implementa-
tion allows to move towards the computation of complex geometries with the integrated
LES-RANS approach.
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These are important steps toward the use of integrated LES-RANS to applications of
industrial relevance.
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Integrated RANS-LES of a realistic gas turbine
compressor/combustor assembly

By J. U. Schliiter, X. Wu, S. Kim, J. J. Alonso AND H. Pitsch

1. Motivation and objectives

In the development of a gas turbine, computational fluid dynamics (CFD) is usually
used to predict the flow in single components of the engine, such as the compressor, the
combustor, or the turbine. The simulation of the entire flow path of a gas turbine engine
using today’s flow solvers is prohibited by the enormous computational costs. However,
the increasing computational resources and the improved efficiency of future flow solvers
puts the simulation of an entire engine within reach. In order for such a simulation to
be useful in the design process, it has to deliver accurate results within a reasonable
turnover time.

The goal of the Advanced Simulation and Computing (ASC) program of the Depart-
ment of Energy (DoE) at Stanford is to develop high-performance flow solvers which are
able to use highly parallel super-computers for the simulation of the entire flow path in
an aircraft engine. However, considering the wide variety of the flow phenomena, which
have to be simulated in the flow path of the engine, it is obvious that only the use of
multiple specialized flow solvers, one for the turbo-machinery parts and one for the com-
bustor, can guarantee appropriate efficiency and accuracy of a simulation. The reason
for this is that the flow regimes and the turbulent scales vary dramatically in these two
components. Most flow solvers used nowadays in the engine design process are specialized
for one of the two tasks.

The flow field in the turbomachinery portions of the domain is characterized by both
high Reynolds-numbers and high Mach-numbers. The accurate prediction of the flow
requires the precise description of the turbulent boundary layers around the rotor and
stator blades, including tip gaps and leakage flows. A number of flow solvers that have
been developed to deal with this kind of problems have been in use in industry for
many years. These flow solvers are typically based on the Reynolds-Averaged Navier-
Stokes (RANS) approach. Due to the complexity of the flows in turbo-machinery, various
parameters in the required turbulence models have to be adapted in order to provide
accurate solutions. For turbomachinery flows, these parameters are usually well known,
and hence, the flow solvers deliver reasonably good results.

The flow in the combustor, on the other hand, is characterized by detached flows,
chemical reactions and heat release. The prediction of detached flows and free turbulence
is greatly improved using flow solvers based on Large-Eddy Simulations (LES). While
the use of LES increases the computational cost, LES has been the only predictive tool
able to simulate these complex flows consistently. LES resolves the large scale turbulent
motions in time and space and only the influence of the smallest scales, which are usually
more universal and hence, easier to represent, has to be modeled (Ferziger 1996; Sagaut
2002). Since the energy containing part of the turbulent scales is resolved, a more accurate
description of scalar mixing is achieved, leading to improved predictions of the combustion
process (Veynante & Poinsot 1996). LES flow solvers have been shown in the past to be
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FIGURE 1. Decomposition of the engine for flow simulations. Compressor (Schliiter et al.
2004c) and turbine (Davis et al. 2002) with RANS; Combustor with (LESMoin & Apte 2004).

able to model simple flames and are currently adapted for use in gas turbine combustors
(Poinsot et al. 2001; Constantinescu et al. 2003).

Here, we want to predict multi-component effects, such as compressor-combustor insta-
bilities, combustor-turbine hot-streak migration and combustion instabilities. The flow
solvers describing the different components in the gas turbine have to run simultaneously,
each computing a part of the domain, and periodically exchanging flow information at
the interface (Fig. 1). The simultaneous execution of multiple parallel flow solvers re-
quires the definition of an interface which allows for the exchange of flow information
and a framework for well-posed boundary conditions in order to process the exchanged
data.

The approach to couple multiple simulation codes has already been applied in different
fields, most notably in global climate simulations (Trenberth 1992), and found recently
more attention in other areas of mechanical engineering (Adamis et al. 1998). However,
coupling RANS and LES flow solvers is a very recent approach and a unique method
to construct an LES-RANS hybrid. While other LES-RANS hybrid approaches, such as
Detached-Eddy Simulations (DES) (Spalart 2000) and Limited-Numerical Scales (LNS)
(Batten et al. 2002) combine LES and RANS in a single flow solver, the approach to
couple two existing flow solvers has the distinct advantage to build upon the experience
and validation that has been put into the individual codes during their development, and
also to run simulations in different domains at different time-steps.

In the current study we are presenting the coupling approach and apply it to a
compressor-prediffuser geometry of a real Pratt & Whitney aircraft gas turbine engine.
The interface between compressor and combustor constitutes the upstream interface of
a full engine simulation (Fig. 1). The flow leaving the compressor enters first into the
prediffuser of the combustor. The function of the prediffuser is to decelerate the flow
with a maximum of pressure gain (Klein 1995). For this reason, prediffusers are operated
close to the point of flow separation. The flow conditions in the prediffuser ultimately
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influence the flow split in the combustor and determine the amount of air entering the
combustion chamber through the fuel injector. Although the performance of the diffuser
is influenced by the flow field leaving the compressor (Barker & Carrotte 2001a; Barker
& Carrotte 2001b), little is known about the exact flow features at this location during
the design phase of an engine. The reason for this is that the two components are usually
developed in isolation and combined tests are done only in the final prototype assembly.

Here, we will apply the approach of multiple flow solvers to study the flow interactions
between these two components. A RANS flow solver computing the final stage of the
compressor is coupled with an LES flow solver computing the combustor. The flow in
the turbomachinery parts is compressible and governed by the flow around the blades.
Hence, a RANS flow solver is an appropriate tool to assess the flow in this section. On
the other hand, the prediction of flow separation is facilitated in the LES approach. And
while the flow in the current design is not separated, predictions of design modifications
have to be able to assess these flow features accurately.

The present paper is organized in the following way:

(a) Firs, we describe the RANS and LES flow solvers as well as the interface and the
boundary conditions.

(b) Then, the application of this approach to a generic compressor/diffuser geometry
is shown.

(¢) Finally, the approach is applied to a real Pratt & Whitney gas turbine engine
geometry.

2. Flow Solvers and Interface

In the following we briefly present the computational framework of this study consisting
of the flow solvers and the interface. A more comprehensive description of the interface
can be found in Schliiter et al. (2003b) and Schliiter et al. (2004d).

2.1. RANS Flow Solver

The RANS flow solver used for this investigation is the TFLO code developed at the
Aerospace Computing Lab (ACL) at Stanford. The flow solver computes the unsteady
Reynolds Averaged Navier-Stokes equations using a cell-centered discretization on arbi-
trary multi-block meshes (Yao et al. 2000). The solution procedure is based on efficient
explicit modified Runge-Kutta methods with several convergence acceleration techniques
such as multi-grid, residual averaging, and local time-stepping. These techniques, multi-
grid in particular, provide excellent numerical convergence and fast solution turnaround.
Turbulent viscosity is computed from a k — w two-equation turbulence model. The dual-
time stepping technique (Jameson 1991; Alonso et al. 1995; Belov et al. 1996) is used for
time-accurate simulations that account for the relative motion of moving parts as well
as other sources of flow unsteadiness.

2.2. LES Flow Solver

The LES flow solver used for the current study is the CDP code developed at the Center
for Turbulence Research (CTR) at Stanford. The filtered momentum equations are solved
on a cell-centered unstructured mesh and are second-order accurate. An implicit time-
advancement is applied. The subgrid stresses are modeled with a dynamic procedure.
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2.3. Interface

Part of the efforts to integrate these flow solvers is the definition of the interface. The op-
timization of the communication and the processing of the exchanged data to meaningful
boundary conditions are some of the challenges encountered. In previous work interface
routines have been established and validated with simple geometries (Shankaran et al.
2001; Schliiter et al. 2003c; Schliiter et al. 2004d).

The interface used for establishing a connection between the flow solvers consists of
routines following an identical algorithm in all flow solvers. The message passing interface
MPI is used to create communicators, which are used to communicate data directly
between the individual processors of the different flow solvers. This means that each
processor of one flow solver can communicate directly with all of the processors of the
other flow solvers. This requires the interface routines to be part of the source code of all
flow solvers. A detailed description of the common algorithms can be found in Schliiter
et al. (2003a) and Schliiter et al. (2004d).

In a handshake routine, each processor determines whether its domain contains points
on the interface. The location of these points are sent to all processors of the other peer
flow solvers. The processors of the peer flow solvers then determine and communicate
back, whether the received points are within their own domain. During the actual flow
computation all processors communicate data for a common point directly with each
other.

The approach of embedding the interface into the source code of each flow solver has
been chosen for its efficiency in the communication process. Alternative solutions would
be to use a third code, which organizes the communication between the flow solvers, or
to limit the peer-to-peer communication to the root processes of each flow solver. While
the latter two solutions are usually easier to implement, they cause more communication
processes and slow down the computation.

2.4. Boundary Conditions

The definition of the boundary conditions requires special attention, especially on the
LES side, due to the different physical modeling approaches. Since on the LES side a part
of the turbulent energy spectrum is resolved, the challenge is to regenerate and preserve
the turbulence at the boundaries. At the LES outflow, a body force method has been
developed to impose RANS solutions at the outflow of the LES domain (Schliiter et al.
2002a; Schliiter et al. 2004b).

At the LES inflow boundary, the challenge is to prescribe transient turbulent velocity
profiles from ensemble-averaged RANS data. Simply adding random fluctuations to the
RANS profiles miss the temporal and spatial correlations of real turbulence and are
dissipated very quickly. Instead, a data-base of turbulent fluctuations is created by an
auxiliary LES computation of a periodic turbulent pipe flow. The LES inflow boundary
condition can then be described by scaling the data base solution to the RANS mean
profiles and velocity fluctuations (Schliiter et al. 2004a).

On the RANS side, inlet and exit boundary condition are applied using the time-
averaged solution from the LES side. More advanced boundary conditions are under
investigation (Kim et al. 2004).
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2.5. Validation

In the past, we have reported the validation of the flow solvers and the interface. The
multi-block RANS flow solver TFLO has been in use for turbomachinery applications for
several years. The description of the flow solver and some validation studies have been
reported by Yao et al. (Yao et al. 1998; Yao et al. 2000). The unstructured LES flow
solver CDP has been validated separately with a focus on combustor simulations (Ham
et al. 2003; Moin & Apte 2004; Wu et al. 2004). The validation for the interface has
been performed for integrated simulations on simplified geometries (Schliiter & Pitsch
2002b; Schliiter et al. 2003b; Schliiter et al. 2004d). The necessary boundary conditions
for integrated simulations have been validated in detail (Schliiter et al. 2004a; Schliiter
et al. 2004b; Kim et al. 2004).

3. Integrated RANS-LES of the NASA Stage 35/Diffuser

In this section we demonstrate the value of coupled RANS-LES computations for
gas turbine applications. The test-case is that of the NASA Stage 35 compressor that
we extended behind the stators with a diffuser. This geometry has been studied by
Schliiter et al. (2003d ; 2004c). Previous studies have demonstrated the capability of
the integrated RANS-LES approach to simulate this kind of geometry. Here, we want
to focus on demonstrating the advantages such an approach may give in comparison to
simulations of the single components.

3.1. Geometry

The compressor geometry for the computed test-case corresponds to that of a modified
NASA Stage 35 experimental rig, which consists of a rotor with 46 rotor blades and a
stator with 36 stators vanes. In order to simplify this geometry, the rotor stage has been
rescaled to a 36 blade count, which allows to compute an axisymmetric segment of 10°
using periodic boundary conditions at the corresponding azimuthal planes.

For this integrated computation, the rotor tip-gap has been closed in order to decrease
the overall computational costs. The inclusion of the tip-gap is addressed in the TFLO
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flow solver and poses no additional problem from the integration point of view. The
RANS time step was chosen to resolve one blade passing with 50 intervals.

On the LES side, we use the structured LES flow solver developed at CTR. A more
comprehensive description of the geometry, the mesh topology and the flow conditions,
as well as some results on the main flow features (see also Fig. 3) can be found in Schliiter
et al. (2003d).

Here, we assess the value of integrated RANS-LES simulations for this geometry. We
will perform an integrated RANS-LES simulation of the entire domain. Then, we will
use the computed flow field at the inlet of the diffuser to define the inflow boundary
conditions for a separate, uncoupled LES simulation of the diffuser. The comparison of
the integrated RANS-LES with the separate LES will give an insight on the importance
of the flow development in the compressor on the diffuser flow.

3.2. Results

The integrated RANS-LES computations were carried out using 64 processors for TFLO
and 16 processors for the structured LES flow solver. Eight blade passings were computed
in 60 hours of wall clock time using an IBM Power3. The uncoupled LES computations
were performed on 32 processors in 10 hours wall clock time computing a physical time-
span equivalent to 5 blade passings.

Figure 4 compares the flow development in the diffuser for the two different simulations.
The solid lines represent the uncoupled LES computation. The inlet velocity profile and
the level of turbulence has been specified according to the time-averaged RANS solution
at the outlet of the compressor. This solution has been retrieved from the integrated
solution and is used to specify the inlet boundary conditions of an the uncoupled LES
computation. The turbulence in this inlet plane is added to the mean velocity profile using
the method of Schliiter et al. (2004d) using the identical turbulence inflow data base as
in the integrated RANS-LES. The profiles of velocity fluctuations contain the turbulence
modeled by the RANS turbulence model as well as the long-wave flow modulation, which
is resolved in the RANS computation. The dashed lines are from the LES domain of the
coupled RANS-LES computation, which means, that at each RANS time step the LES
inflow is updated according to the unsteady solution in the compressor.

Comparing the velocity profiles at the inlet plane, we can see that both solutions are
identical. However, further downstream both solutions are distinctively different.

The profiles of the velocity fluctuations show a similar behavior. At the inlet, both
profiles are identical. Here, already shortly downstream, the velocity fluctuations are
much larger in the integrated RANS-LES computation. This can be explained with the
fact that in the integrated RANS-LES unsteady flow features from the compressor are
transfered to the LES. This results in temporarily stronger gradients. The production of

turbulence is determined as: P = uu’; 2% and depends on these gradients. Hence, in the

1] Oz
coupled RANS-LES simulation the RANS simulation does not only provide turbulent
energy in its turbulence model, but also the potential to create more turbulence in the
unsteady mean velocity gradients. In the current case, the additional turbulence produc-
tion leads to a different turbulence field which results in a different mean flow field than
in the uncoupled LES computation. This demonstrated that in the current case of the
NASA Stage 35/diffuser the use of an integrated RANS-LES can improve the prediction
of the diffuser flow.
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FIGURE 4. Velocity profiles in the diffuser; Solid lines: LES only; Dashed lines: RANS-LES;
Above: axial velocity; Below: axial velocity fluctuations

3.3. Pratt & Whitney Engine Geometry

In the previous sections we presented the coupled RANS-LES approach and its applica-
tion to a simplified compressor geometry. Here, we want to demonstrate this approach
using a real engine geometry.

The geometry considered is that of a Pratt & Whitney aircraft engine (Fig. 5 & 6).
Here, we present a simulation of the last stage of the high pressure compressor consisting
of one rotor and the exit guide vanes (EGV) using the RANS approach. This RANS
simulation is coupled with a LES of the prediffuser and the entire combustor. We chose
to simulate the entire combustor including the fuel injector, since the flow blockage by the
fuel injector and the resulting flow split is considered to be important for the performance
of the diffuser (Barker & Carrotte 2001a; Barker & Carrotte 2001b; Klein 1995). However,
the flow in the combustion chamber is non-reactive. The computation of reactive flows
has been already demonstrated for this geometry (Moin & Apte 2004), but we consider
it as not necessary for the purpose of the present demonstration.

The geometry is a 20° segment of the full engine geometry, which means that we
compute one fuel injector. The blade count of the last stage of the compressor was
rescaled to fit the 20° segment, and four rotor blades and seven exit guide vanes are
computed in total. The RANS mesh consists of 500,000 cells in a structured multi-block
mesh.

The complexity of the combustor geometry requires the use of the unstructured LES
flow solver CDP. The combustor mesh consists of 3,000,000 unstructured mesh cells and
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FIGURE 5. Geometry of Pratt & Whitney test case: In the front, the segment of the compressor (4
rotor blades, 7 exit guide vanes) is shown. The flow leaving the compressor enters the prediffuser
box before it enters a plenum in front of the fuel injector.

FIGURE 6. Geometry and flow visualization in the combustor. Note the compressor stage
upstream of the diffuser. Smoke visualization demonstrates flow features of the cold flow.

is refined in the diffuser part. The mesh resolution in the prediffuser was chosen to
correspond approximately to the coarse mesh resolution of the diffuser simulation (Wu
et al. 2004).

The computation of 10 blade passings was performed using 128 processors on an IBM
SP3. One blade passing needed 10 hours wall clock time. The entire computation was
performed within one week.

Figures 7 and 8 show a flow visualization of this computation. For this visualization,
the computed 20° segment is shown several times in different azimuthal locations in
order to present a picture of a 360° engine. In the combustor, isosurfaces of the axial
velocity demonstrate the level of detail of the flow simulation in the combustor. In the
compressor and the prediffuser, a clip plane at 50% span of the exit guide vane (EGV)
shows the axial velocity distribution. The most dominant flow feature at the interface
is the propagation of the wakes of the EGV into the prediffuser. The wakes create large
scale turbulent structures inside the prediffuser. Figure 9 shows a close-up of the axial
velocity contours at the interface.

This computation of the Pratt & Whitney real engine geometry is the first of its kind.
Simulations of this portion of a gas turbine usually encounter difficulties, either in the
description of the compressor flow, which can be computed only by a RANS approach,
or the representation of the diffuser flow, which needs to capture the possible presence
of flow detachment accurately and is largely improved by the use of LES.
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FIGURE 7. Isocontours of the axial velocity at the 50% plane in the compressor and diffuser.
Isosurfaces of axial velocity in the combustor. A 20° segment is computed.

The current state-of-the-art in diffuser simulations uses either radial profiles obtained
from experiments or steady state data from uncoupled RANS simulations of the compres-
sor. The integrated simulation allows not only to obtain a more precise representation of
the compressor flow, but also to simulate the geometries accurately without the need of
input from experiments.

4. Conclusions

In this study we presented an approach to couple two separate flow solvers, one based
on the RANS approach, the other based on LES, to improve flow predictions of complex
flows. As an example, we investigated the flow leaving the compressor and entering the
diffuser. We have validated the interface and the flow solvers extensively in previous
studies. Here, we applied the multi-code coupling approach to a compressor-combustor
geometry.

First, a computation of a simplified compressor/diffuser geometry demonstrated the
basic flow features of such a geometry and showed the value of coupled RANS-LES for
this application.

Then, the approach was applied to a real engine geometry. Basic flow features of this
flow configuration were identified.

The integrated RANS-LES environment provides a computational test bench for the
assessment of complex flow interactions, such as those of the compressor/combustor
coupling in an aircraft gas turbine engine.
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FIGURE 8. Close-up: Isocontours of the axial velocity at the 50% plane in the compressor and
diffuser. Isosurfaces of axial velocity in the combustor. A 20° segment is computed.
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Variational multiscale large eddy simulation of
turbulent flows using a finite volume method

By V. Gravemeier

1. Motivation and objectives

The variational multiscale method represents a general approach for problems in com-
putational mechanics which give rise to broad ranges of scales, see Hughes et al. (1998).
The basic concept differentiates a predefined number of scale groups. This theoretical
framework has also been applied to the problem of the incompressible Navier-Stokes
equations in Hughes et al. (2000) in order to facilitate large eddy simulation (LES)
of turbulent flows. In Collis (2001) and Gravemeier (2003), the variational multiscale
method for LES has recently been broadened by raising the number of separated scale
groups to three. Such a three-scale separation accounts specifically for large resolved
scales, small resolved scales, and unresolved scales.

Apart from the initial separation and potentially different treatment of the respective
scale ranges, two important aspects characterize the variational multiscale LES. Firstly,
a variational projection separates scale ranges within the variational multiscale method
rather than a spatial filter as in traditional LES. Secondly, the (direct) influence of the
subgrid-scale model is confined to the small resolved scales. Thus, the large resolved scales
are solved as a direct numerical simulation (DNS), i.e. without any (direct) influence of
the modeling term. Of course, the large resolved scales are still influenced indirectly by
the subgrid-scale model due to the inherent coupling of all scales.

At this stage, it should be pointed out that the variational multiscale method is es-
sentially a theoretical framework for the separation of scales. Corresponding practical
implementations within the variational multiscale framework are still rare. For such
practical methods, it is crucial that a clear separation of the different scale ranges is
actually achieved. The scale-separating approach developed in this work is implemented
into the CDP-a code. Underlying this code is a finite volume method particularly suited
for applications on unstructured grids. Please consult e.g. Ham et al. (2003) for further
information concerning CDP-«. Within this computational environment, the separation
of scales is developed in this work. A general class of scale-separating operators based
on combined multigrid operators in a two-grid procedure is proposed here in order to
replace spatial filters or their discrete analogs, respectively, which are widely used in
classical LES. One particular representative of this class has the important property of
a projector. A projector of this type has also been addressed in Koobus & Farhat (2004)
as well as Vreman (2004).

The proposed methods of this work are applied to the case of a turbulent channel flow
and compared to the DNS data in Moser et al. (1999). Turbulent channel flow has already
served as one of the first test cases for variational multiscale LES in Hughes et al. (2001).
That study was later complemented by Oberai & Hughes (2002) reporting the case Re, =
590. A further study in Jeanmart & Winckelmans (2002) compares the subgrid-scale
modeling approach of the variational multiscale method with other modeling approaches
in the context of a turbulent channel flow. All of the aforementioned studies have one
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important aspect in common: the use of a spectral method with higher-order accuracy
in the homogeneous x;-x3-planes of the channel. In this work, the method applied is
of second-order accuracy overall without any special treatment for the homogeneous
planes of the channel. With regard to future applications in more complex geometries,
performance of the variational multiscale LES within such a numerical environment is
the more relevant test case, since spectral methods are by no means suited to such
applications. The introduction of a generally larger numerical error due to the use of
a second-order accurate method, combined with a relatively coarse discretization, has
been investigated in Kravchenko & Moin (1997) at a high Reynolds number channel flow
(Re, = 1000). Similar evaluations have also been reported in Shah & Ferziger (1995) for
a flow at very high Reynolds number Re, = 1800 as well as in Terracol et al. (2001) for
flows at Reynolds numbers Re, = 180 and Re, = 590.

This work basically follows the general guideline expressed in the idea that there exists
an inherent link between, on the one hand, physically motivated turbulence modeling and,
on the other hand, numerically motivated modeling to account for inevitable errors due to
an inadequate discretization. A combined strategy relying on this observation has already
been pointed out as a very promising tool in Collis (2001) and Gravemeier (2003). A
detailed study of the approach to be presented in this work has recently been completed
in Gravemeier (2004).

2. Variational three-scale formulation
A variational form of the incompressible Navier-Stokes equations reads
BNS (V,q;ll,p) = (v7f)Q V(V,q) € VUIJ (21)

where Vy,, denotes the combined form of the weighting function spaces for velocity and
pressure in the sense that Vyup := Vyu X Vp. The bilinear form Byg (v, g;u,p) on the left
hand side is hereby defined as

BNS(v,q;u,p):/V%—ltldﬂ+/vv-(u®u) dQ+/vadQ
Q Q Q

—/vaudQ—/qV-udQ (2.2)
Q Q

where v and ¢ denote the weighting functions. The Ls-inner product in the domain 2
on the right hand side is defined as usual:

v, o = /Q vfdQ (2.3)

The scales of the problem are now separated into three scale ranges as proposed in Collis
(2001), Gravemeier (2003), and Gravemeier et al. (2004): the large resolved scales, small
resolved scales, and unresolved scales. In terms of the underlying weighting and solution
function spaces Vyp, and Sy, this scale separation yields

Vap = Vup ® Vi, ® Vap (2.4)
Sup = Sup ® Sl @ Sup (2.5)

According to this, the weighting functions read

V=V+V+V; ¢=7+q¢ +¢ (2.6)
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and, analogously, the solution functions are composed as
u=u+u 4+ p=p+p +p (2.7)

Due to the linearity of the weighting functions, the variational equation (2.1) may now
be decomposed into a system of three variational equations reading

Bys (V,g;a+u' +0,p+p' +p) = (¥,), V(¥,9) €V (2.8)
Bns (V,¢;u+u +0,p+p +p) = (v, ), V(v',q') € Vi (2.9)
Bns (V, T+ u' + 0,5+ p +p) = (¥,f)g Y (¥,4) € Vap (2.10)

Furthermore, it is assumed that

relying on a clear separation of the large-scale space and the space of unresolved scales.
Likewise, the opposite projection is assumed to be

Bns (V,4;9,p) ~ 0 (2.12)
This leads to a simplified equation system by changing (2.8) to
Bys (V,gu+u,p+p) = (V.f)g V(.0 €V (2.13)
and (2.10) to
Bys (v, giu' +i,p' +9) = (.6)g ¥ (9,4) € Vup (2.14)

whereas (2.9) remains unchanged.

It is not intended to resolve anything called unresolved a priori. Taking into account the
effect of the unresolved scales onto the small scales is the only desire. Some alternatives
lend themselves for this purpose as shown in Gravemeier (2003), but the focus here will
be on the subgrid viscosity approach as a usual and well-established way of taking into
account the effect of unresolved scales in classical LES. The small-scale equation (2.9)
then reads

Bns (V,¢;u+d,p+p') — (v',VTAu')Q = £, V(v'.q) eV, (2.15)

Due to assumption (2.11), the subgrid viscosity term directly acts only on the small
resolved scales. Indirect influence on the large resolved scales, however, is ensured due to
the coupling of the large- and the small-scale equations. Appropriate modeling approaches
for the subgrid viscosity v? will be discussed in section 4. Note that the reason for
introducing a model term in the variational formulation is mathematically different from
the usual necessity of introducing a model term due to the appearance of a subgrid-scale
stress tensor in the strong formulation of the Navier-Stokes equations in a classical LES.
Nevertheless, the physical necessity to account for the missing effect of unresolved scales
onto the resolved scales is the same in both cases.

The variational equations above may serve as the starting point for either a finite
element formulation or a finite volume formulation, but the focus here is on the finite
volume method. The presupposition for the application of the finite volume method is
a discretization of the domain Q into n., control volumes Q; (i = 1, ...,n.,) with control
volume boundaries I';. The weighting functions are chosen to be

V="V =) g (2.16)
1 7
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where
h _ 1. h — i
vi=1 =1 in @ 2.17)
and zero elsewhere. In (2.17), 1 explicitly means that each component of v/ is of unit
value. The characteristic control volume length of the discretization is h. With these

definitions at hand, the variational equation (2.1) may likewise be formulated for each
v and ¢! such that

BNS (V?,q:’, uh7ph) = (v?7f)g v (vilaqzh) € Vﬁp (218)

where the bilinear form on the left hand side is obtained from (2.2) after applying Gauss’
theorem to the convective term, the pressure term, the viscous term, and the continuity
term according to

h
BNS (V?7q?;uh,ph) :/Vfaaitdg-i-/ Vf’ (uh’®uh) ndr+/ vilphndr
Q r; .

i

—/ vivn . Vu dQ —/ g -ndQ (2.19)
r; r;
where I'; denotes the boundary of the support of v/ and ¢!, respectively, and n the
respective outward normal vector of unit length to this boundary of support.

The scale separation to be presented in section 3 relies on a level of complete resolution
indicated by the characteristic control volume length h. In terms of the velocity, this reads

ub = (@+u)" (2.20)

With respect to this complete resolution level, a large-scale resolution level is identified a
priori. This level is characterized by the control volume length h and, accordingly, yields
a large-scale velocity @". The small-scale velocity is consistently defined as

u" =u" - (2.21)

Accordingly, a large-scale weighting function
vh=3"v (2.22)

where
vi=1 in (2.23)
and zero elsewhere is introduced. Q; denotes the i-th control volume of the discretization
with the characteristic control volume length h. Reunifying the large-scale equation (2.13)
and the small-scale equation (2.15) with the subgrid viscosity term on the basis of the
preceding finite volume formulation yields a final equation which may be written in
compact form with the help of (2.21) as
BNS (Vgl) q’lh‘;ﬁh’ph’) - (V;h7 VTn : Vulh)rl

= Bus (vhaliut o) = (Vi v (o —wt)) s (Vv (- at))
€

= (v?,f)Q V(vigt)evt, vt

up?’

.

v (2.24)

where the boundary T'; is split up into a large-scale boundary T; and, accordingly, a
small-scale boundary subject to

I=T;-T; (2.25)
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isotropic
subdivision

parent children

FIGURE 1. Parent hexahedron with 8 child hexahedra

These boundaries are illustrated in the figure at the end of the subsequent section. The
inherent scale separation remains obvious in (2.24) merely due to the subgrid viscosity
term.

3. Separation of scales

As a geometrical basis for the present approach, two grids are created: a coarser grid,
which is called the ‘parent’ grid, and a finer grid, which is called the ‘child’ grid. The
child grid is obtained by an isotropic hierarchical subdivision of the parent grid similar
to the procedure described in Mavriplis (1997). In contrast to the usual parent-child
relationship in multigrid solvers where the parent needs to know only the number of its
children, a complete parent-child knowledge base is set up here, i.e. every parent knows
about every child and vice versa. Hybrid unstructured meshes may contain tetrahedra,
hexahedra, prisms, and pyramids. However, only two different types of faces, namely
triangles and quadrangles, occur for these 4 different types of control volumes. Based on
the fact that a factor of 2 is most often used in a dynamic modeling procedure for the
relation of the cutoff length scale for the large resolved scales to the one for all resolved
scales, an subdivision procedure using this factor is chosen. Both a parent triangular face
and a parent quadrangular face subdivided isotropically result in four child faces of the
same type. For the actual 3-D control volumes, isotropic subdivision of either a parent
tetrahedron or hexahedron, for example, both results in 8 children. A parent hexahedron
along with its 8 child hexahedra is depicted in Fig. 1. Illustrations of subdivided tetra-
hedra, prisms, and pyramids may be found in Mavriplis (1997). Obviously, this kind of
refinement is not restricted to a subdivision by factor 2. Other integer factors (e.g., 3 or
4) may be applied, and result in considerably lower ratios of the spaces containing the
large resolved scales to the spaces containg the small resolved scales.

The general class of scale-separating operators based on multigrid operators reads

' = 5™ [u"] = Po R [u"] = P [a'] (3.1)

where the scale-separating operator S™ consists of the sequential application of a restric-
tion operator R and a prolongation operator P. Applying the restriction operator on uh
yields a large-scale velocity @" defined at the degrees of freedom of the parent grid which
is then prolongated in order to obtain a large-scale velocity T" defined at the degrees of
freedom of the child grid. Various restriction operators as well as prolongation operators
may be used in (3.1). However, the attention is focused on two special combinations of
restriction and prolongation operators. Both of them rely on the same restriction oper-
ator, but apply different prolongation operators afterwards. The restriction operator is
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defined to be a volume-weighted average over all the child control volumes within one
parent control volume subject to

Necop
_ X Qg
=S (3.2)
2. 9
=1

where ﬁJE denotes the large-scale velocity at the center of the parent control volume €;
and ng,p the number of child control volumes in ﬁj. The first prolongation operator PP
yields a constant prolongation, i.e.
at = pp [ﬁﬂ =u VO CQ; (3.3)
K3
and zero elsewhere. The scale-separating operator defined as
SP™ = PPoR (3.4)

has the property of a projector indicated by the additional superscript p. The second
prolongation operator considered in this work yields a linear prolongation subject to

a* = p* [ﬁﬂ =u Vil (F-r) YO C O (3.5)
K3

and zero elsewhere. The vectors r; and T; denote geometrical vectors _pointing to the

centers of the child control voume ); and the parent control volume (;, respectively.

V" describes the discrete gradient operator on the parent grid. Due to this, values from
neighbouring parent control volumes and, consequently, child control volumes contained
in these neighbouring parent control volumes influence the final large-scale value in the
child control volume ;. Hence, P® does not provide us with a projective scale-separating
operation as shown in Gravemeier (2004). It rather produces some kind of smoothing
prolongation, which is indicated by the additional superscript s. The complete scale-
separating operator is defined as

S*™ .= P*o R (3.6)

Nevertheless, S°™ exhibits a fundamentally different character than usual discrete smooth
filters.

The validity of (2.24) in a complete sense with respect to the subgrid viscosity term
remains to be analyzed. In Gravemeier (2004), it is demonstrated that discrete smooth
filters, in contrast to the scale-separating operators based on combined multigrid oper-
ators, do not satisfy (2.24) in a strict sense due to the fact that the third term in the
second line of (2.24) cannot be represented. Nevertheless, there is also a crucial differ-
ence between SP™ and S°™ in this context: there is no large-scale (subgrid) viscous flux
for SP™ across the small-scale boundary subject to (2.25), see Gravemeier (2004). As a
result, (2.24) may be specified for SP™ as

Bys (vP,qlat,pt) - (VthVTn_Vuh)Fg = (vh,f), (3.7)

In Fig. 2, the definition of large- and small-scale boundaries in the finite volume method

is visualized for the 2-D case. The large-scale weighting function vh is exclusively defined

on the large-scale boundaries belonging to the parent control volume as shown in Fig.
2(a). The small-scale weighting function v'* is exclusively defined on the inner boundaries
of the child control volumes, see Fig. 2(b).
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i

@ ] (b)

FIGURE 2. Geometrical locations of weighting functions in the FVM for a 2-D case: (a)
large-scale; (b) small-scale

4. Subgrid-scale modeling within the multiscale environment

Adopting the usual filter-related notation for the Smagorinsky model to the underlying
situation where the resolved part of the velocity is defined by the discretization with
characteristic length scale h, the subgrid viscosity can be expressed as

vT = (Csh)’ |e (u")] (4.1)

The actual evaluation of (4.1) is performed in every control volume using the respective
characteristic length scale, so that a value for v* in every control volume is obtained.
Despite the well-known flaws of the constant-coefficient Smagorinsky, the integration of
this simple model within the framework of the variational multiscale method has already
led to good results for a number of test cases. The present study focuses on the specific
modification of the model restricting the dependence on the small scales subject to

vT = (Csh)®|e (u™)| = (Csh)® |e (u" —@")| (4.2)

which has been named ‘small-small’ model in Hughes et al. (2000) and seems to be the
most natural version within the multiscale formalism. The constant C's is chosen to be
0.1.

The dynamic modeling procedure proposed in Germano et al. (1991) enables a com-
putation of the constant Cg as a function of time and position. It is interesting to note
that the dynamic modeling procedure already distinguishes large resolved scales, small
resolved scales, and unresolved scales explicitly. This mirrors the type of scale separation
in the variational three-scale formulation.

Due to the pointwise formulation of the classical Germano identity, the dynamic pro-
cedure starts with a spatially discretized strong form of the Navier-Stokes equations. The
spatially discretized momentum equation reads

ou”

W+v-(uhcg>uh)+vp’1—yAuhw-r’lzf’l (4.3)
where the subgrid-scale stress tensor is defined as
?=ueuw"-u"eu (4.4)

Note that in (4.3)-(4.4) the ususal filtered formulation is replaced by the actual implicit
scale-separation based on the chosen discretization with characteristic length scale h. The
‘test filter’ is replaced by the scale-separating operators of section 3. Thus, the analog of
the ‘subtest’-scale stress tensor can be expressed as

"= (u® u)h —u'eu' =9 [(u ® u)h] ~Su"]® S [u"] (4.5)




138 V. Gravemeier
With regard to the child grid discretization level, the following may be stated:

L' =7h —7h =7h — § [r"] (4.6)
where L" can be obtained as
L'=ut@u -@"e@" =S [u"@u"] - S[u"] ® S [u"] (4.7)

by inserting (4.4) and (4.5) into (4.6). Assuming the Smagorinsky model as an appro-
priate modeling term at both discretization levels and accounting for the fact that the
Smagorinsky model is basically a ‘trace-free’ model in the context of incompressible flow,
(4.6) is modeled as follows:

devL" = L" — %tthI
=-2(Csh)?S|[e (u")]] S [e (u")] + S [2 (Csh)? |e (u")|e (uh)] (4.8)

where I denotes the identity tensor, and modeling is obviously confined to the deviatoric
part of the tensor L*. It is now assumed that Cg is at least constant over one control
volume of the parent grid. Hence, (4.8) may be rewritten as
7\ 2
devi = (©sh)* |25 [Je (") ()] = 2 () S|l ()] S e (uhﬂ]

= (Csh)* M" (4.9)

The calculation of the constant expression (Csh)? on the right hand side of (4.9) aims
to minimize the error tensor

E" = devL" — (Csh)” M" (4.10)

Using the least-squares approach proposed by Lilly (1992), the formula for the constant
expression reads

devL'M"

MhMh

from which the actual constant C's may be evaluated. Gravemeier (2004) discusses an
alternative procedure based on the classical Germano identity which makes use of the
special form of the scale-separating operators and yields only values for Cs related to
the control volumes of the parent grid. The essential differences between this strategy

and a new approach based on the so-called variational Germano identity of Oberai &
Wanderer (2004) are also addressed.

(Csh)® = (4.11)

5. Numerical example: turbulent channel flow

Three different methods are compared:

e the dynamic Smagorinsky (DS) model based on the classical Germano identity in
the usual non-multiscale application,

o the constant-coefficient Smagorinsky (CMS) model in the ’small-small’ version (4.2)
within the multiscale environment subject to (2.24), and

e the dynamic Smagorinsky (DMS) model in the ’small-small’ version (4.2) based on
the classical Germano identity within the multiscale environment subject to (2.24).
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All of these methods are investigated for the scale-separating operators SP™ and S*™.
The results are compared to simulations with discrete smooth filters based on the trape-
zoidal rule as well as the Simpson rule denoted S/ and S*/, respectively. In the following
diagrams, the abbreviation DMS-PM, for instance, indicates the variational multiscale
LES incorporating a dynamic Smagorinsky model with the scale-separating operator SP™
applied. Results are also reported for simulations using the constant-coefficient Smagorin-
sky model in a non-multiscale environment (CS) as well as applying no model at all (NM).
It must be emphasized that CMS is merely the combination of these last two approaches
by applying no model to the large resolved scales and the constant-coefficient Smagorin-
sky model to the small resolved scales.

Based on results of Gravemeier (2004), the characteristic length scale ratio for all DS
and DMS simulations is set to 2.5 for SP™ and 2.0 for S*™. For S*/ and S°/, ratios of
2 and 1.5, respectively, are applied. The computational effort required for the various
methodological combinations is also evaluated. In this brief, results are reported only for
the case Re, = 590 with a relatively coarse discretization of 64 control volumes in each
coordinate direction. Gravemeier (2004) provides a detailed description of the numerical
setup as well as the results for three other cases.

In order to compare the various methods, the scale-separating operator SP™ is used
for DS, CMS, and DMS, since it is the most important operator of this work due to its
projective property. Figs. 3 and 4 depict the mean streamwise velocity profile and the
turbulent kinetic energy, respectively. The larger numerical error introduced by a second-
order accurate method in combination with a relatively coarse discretization already
mentioned in section 1 comes into play for all methods applied. Surprisingly however,
the lower accuracy of the basic method affects CMS-PM to a far lesser extent than
the other methods towards the channel center. It is considerably closer to the DNS
profile in this part of the channel than NM, DS-PM, and DMS-PM. DMS-PM shows no
improvement in comparison to NM, and DS-PM performs even slightly worse. Despite
the higher accuracy in the inertial layer (usually expected to start at z3 = 30), CMS-PM
slightly underpredicts the velocity profile in the buffer layer (usually expected to range
from 3 = 5 to 3 = 30). The profile for the turbulent kinetic energy shows a much
better agreement for the height of the peak in comparison to the DNS profile than the
other methods. Of course, CS is far worse than all other methods with respect to both
aspects of the flow.

An objective comparison of the computational effort for the simulations using the
aforementioned methods is difficult, since it strongly depends on the amount of compu-
tational time spent within the actual solvers in CDP-a. These time measures can vary
considerably from one calculation to another. Thus, only approximate measures for the
necessary computational effort are reported as a mean value of the actual simulation
times covering all calculations in Gravemeier (2004). Setting the computational effort
for NM to 1.0, the relative measures for CS, DS-PM, CMS-PM, and DMS-PM are circa
1.10, 1.15, 1.10, and 1.15, respectively. Thus, CMS in combination with PM is a very effi-
cient method computationally, even more efficient than DS. Taking into account different
scale-separating operators, the numbers increase drastically for CMS and DMS however.

A second important issue concerns the differences between the various scale-separating
operators. In Figs. 5 and 6, the mean streamwise velocity and the turbulent kinetic
energy, respectively, for four different scale-separating operators applied with DS, CMS,
or DMS are pictured. There are hardly any differences visible for DMS in Fig. 5(c),
but the scale-separating operators PM and SM perform better than TF and SF in the
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FIGURE 4. Comparing methods (pm-separation): turbulent kinetic energy.

context of DS, see Fig. 5(a). This presumption is, at least to a certain degree, reinforced
for the turbulent kinetic energy profiles in Figs. 6(a) and (¢). A remarkable difference
between the projective scale-separating operator PM and the other operators shows up
in the context of CMS for the mean streamwise velocity particularly as well as for the
turbulent kinetic energy profile, although to a lesser degree, see Figs. 5(b) and 6(b).
Thus, the favourable behaviour of CMS-PM in the inertial layer as well as the slightly
underpredictive performance in the buffer layer and parts of the viscous sublayer seems
to be attributed to CMS only depending on this specific scale-separating operator.
Specifying the necessary computational effort for the various scale-separating opera-
tors results in the following approximate numbers. Setting the relative computational
simulation time for the operator PM to 1.0, the measures for SM, TF, and SF are ap-
proximately 1.25, 1.40, and 2.50, respectively. In particular, SF in this implementation
is an extremely time-consuming operator and is, therefore, not recommended for further
use. The reason for the additional effort linked with such non-projective operators can
be traced back to a necessary call of the scale-separating routine at the beginning of
each Gauss-Seidel iteration step in the solution procedure for the momentum equation.
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This call is required to determine the updated large-scale velocity field for the residual
calculation. This is not necessary for PM.

In order to analyze the specific behaviour of CMS-PM in comparison to all other scale-
separating operator in the context of CMS, the small scales are extracted and investigated
explicitly in this section. Figs. 7 and 8 depict the mean streamwise small-scale velocity and
the small-scale turbulent kinetic energy, respectively. The small-scale velocity of CMS-
PM shows an oscillating behaviour with large amplitudes particularly in the buffer layer.
For CMS-SM, the frequency of the oscillation is about the same, but the amplitudes
are considerably smaller. In case of CMS-TF and CMS-SF, one oscillation period can
be seen at most throughout half-width of the channel with the amplitude being larger
for CMS-TF than for CMS-SF. As expected, the largest small-scale turbulent kinetic
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energy is obtained for CMS-PM (although the peak is also matched by CMS-SM) and
the smallest one for CMS-SF, see Fig. 8. This indicates a measure for the amount of small
scales extracted by the respective scale-separating operator and has been quantified in
Gravemeier (2004).

6. Conclusions and future plans

A general class of scale-separating operators based on combined multigrid operators
and suited for variational multiscale LES both with dynamic and constant-coefficient
based subgrid-scale modeling has been proposed. These operators may also be used for
the dynamic modeling procedure in a classical LES. Only one of these scale-separating
operators exhibits the important property of a projector allowing fulfillment of the theo-
retical assumption for a clear scale separation within the variational multiscale method.
All of the scale-separating operators have been implemented in a second-order accurate,
energy-conserving finite volume method particularly suited for applications on hybrid
unstructured grids in complex geometries. Dynamic and non-dynamic methods based on
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the various scale-separating operators have been tested for the case of a turbulent chan-
nel flow at two different Reynolds numbers and for two different discretizations for each
of these two Reynolds number flows. Several important observations have been made
and summarized in Gravemeier (2004). With respect to certain crucial flow features, the
simple constant-coefficient Smagorinsky model based variational multiscale method in
combination with the projective operator has shown remarkable results. In particular, it
represents a very efficient methodical combination with regard to the important aspect
of computational cost.

Four subsequent projects growing from this study are currently underway or planned
for the near future. First, the investigation of an alternative approach for dynamic
subgrid-scale modeling based on the variational Germano identity is currently underway.
In contrast to the classical Germano identity, this identity appears to be more consistent
with the variational LES formulation. Second, the performance of the scale-separating
operators based on combined multigrid operators will be investigated in the context of
more challenging turbulent flows. These flow configurations will be characterized by an
even larger range of subgrid scales than in the present investigation in order to provide
an even more challenging test for variational multiscale LES. Currently, it is planned to
use the turbulent flow in a planar asymmetric diffuser as such an additional test case.
Third, the suitability of a more sophisticated approach for dynamic subgrid-scale mod-
eling according to Ghosal et al. (1995) in the framework of variational multiscale LES
will be investigated. Fourth, it is planned to address wall modeling approaches in this
context.
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Large-eddy simulation of passive-scalar mixing
using multifractal subgrid-scale modeling

By G.C. Burton

1. Motivation and introduction

Turbulent mixing of a passive scalar is important to a number of processes of interest
to industry and science, including multiphase flows and the dispersion of pollutants
in atmospheric flows. Turbulent mixing also is of particular interest to the modeling
of reacting flows, since turbulence is known to mix reactants in an extremely rapid
manner, which may greatly influence the rate and efficiency of the reactive processes.
While experimental and/or field work may continue to provide certain insights into the
characteristics of these flows, their analysis may be difficult, time consuming or expensive
to conduct. As a result, the practicing engineer and scientist has turned in the past decade
to numerical simulation to develop a more detailed understanding of turbulent flows.
In this context, large eddy simulation has been shown to be a promising approach to
numerically simulate many turbulent flows. However, most current subgrid-scale models
used for LES fail to recover the detailed spatial structure of the stress and energy transfer
fields of such flows. These factors, however, may be of particular importance for modeling
processes that occur principally in the subgrid scales, such as energy-dissipation, scalar-
dissipation and chemical reactions.

Recently, Burton & Dahm (2004 a,b) have introduced multifractal modeling for large-
eddy simulation, which derives a structural model for the subgrid velocities u;’® based on
the demonstrated multifractal structure of the subgrid vorticity field w?®9%, and uses this to
close the filtered Navier-Stokes momentum equation. The method shows special promise
because, at modest computational cost, multifractal LES has been shown to recover
the detailed spatial structure of the subgrid-energy production P(x,t) field with high
accuracy (p > 0.997). Importantly the multifractal modeling approach may be applied
to other turbulence modeling problems. Thus, the multifractal structure of the passive-
scalar dissipation field in high Re turbulence, already confirmed by previous studies,
may be used to develop a model for the filtered passive-scalar transport equation. In this
report, the derivation of such a model is set out in detail, as well as a priori tests of
the model against DNS data, and a posteriori tests in which the model is employed in
large-eddy simulations of the turbulent mixing of a passive scalar. These tests indicate
that multifractal modeling holds great promise for the accurate simulation of turbulent
mixing of passive conserved scalar quantities.

2. Derivation of a multifractal model for the filtered passive-scalar flux
2.1. Background

For large-eddy simulation, the filtered passive-scalar transport equation without source
term may be expressed as

¢ — 9*¢ 0
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where D is the coeflicient of scalar diffusivity, and where

of = W; (597 +ui"" C +utt (oee. (2.2)
Equations (2.1) and (2.2) involve filtered nonlinear interactions between the resolved and
subgrid velocities u; and u;gs on the one hand, and the resolved and subgrid passive-
scalar concentrations ¢ and (*9° on the other, and require some form of modeling. One
approach is to evaluate the terms in o7 from a structural model that provides the subgrid

velocity components u5’° and the subgrid-scalar concentrations (*9°. Burton & Dahm

(2004 a,b) have proposjed such a model for u;gs based on the multifractal structure of
the vorticity field in high Reynolds-number turbulence. The approach involves describing
the spatial distribution of subgrid vorticity magnitude by a multifractal cascade and the
distribution of subgrid vorticity orientations by an additive decorrelation cascade. An
expression for the subgrid velocity components can be derived by applying the Biot-
Savart operator to this representation of the subgrid vorticity, which after some analysis
takes the form:

898 A
W’ x Bud, (2.3)
where
1
B = 047 27% [2% - 1] : (2.4)

where ujA is the velocity field associated with the smallest resolved scale A, and where
the number of cascade steps in the subgrid field is given by

N = logy,(A/N). (2.5)

A similar model for the concentrations of a conserved passive scalar (*9° may be developed
based on the multifractal structure of the passive-scalar dissipation field in high Reynolds
number turbulence.

2.2. QOverview

Fundamental considerations indicate that gradient-magnitude fields in turbulent flows,
such as the passive-scalar energy dissipation field, given by

X(Xat) =-D VC ) VC(Xa t)a (26)

will display multifractal scale-similarity. This structure arises as the result of the repeated
stretching and folding provided by the strain-rate and vorticity fields within turbulent
flows. Such repeated stretching and folding may be represented by a stochastic mul-
tiplicative cascade, in which a scale-invariant distribution of multipliers M maps the
given field from one scale to the next as the cascade proceeds. In one dimension, such a
multiplicative cascade is given generically by

N
(@) = po(z) 2V [ Ma (@), (2.7)

where the mass-density field is given by u(z), the initial mass distribution averaged over
the domain is p,(x) and the number of repetitions in the cascade is given by N.

A number of prior experimental studies have confirmed that the passive-scalar dissi-
pation field in high Reynolds-number turbulence does in fact exhibit multifractal scale-
similarity over inertial-range scales (Prasad et al. 1988; Prasad & Sreenivasan 1989;
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Frederiksen et al. 1997), and from this a unique distribution of scale-invariant multi-
pliers M that distributes the scalar dissipation field of (2.6) according to (2.7). This
multifractal structure may therefore be used to derive a model for a dynamically-passive
conserved-scalar field at the subgrid scales (%9%(x,t) that closes (2.1). The derivation
involves representing the spatial distribution of the subgrid-scalar gradient field V{*9°
by two cascades: (a) a multiplicative multifractal cascade for scalar gradient magnitudes
| V(*9% | and (b) an additive decorrelation cascade for scalar-gradient orientations &39°.
This representation for the scalar gradient field is then inverted using Green’s function to
recover the subgrid-scalar concentrations (*9°. The following derivation parallels in most
substantial respects the derivation of the multifractal model for the subgrid velocity field

u3?® set forth in Burton & Dahm (2004a).

2.2.1. The scalar-gradient magnitude cascade

Specifying the scalar-gradient magnitude in each subgrid-scale cell first requires deter-
mining the total amount of subgrid-scalar dissipation x*9® over the LES grid cell A. This
may be determined from Kolmogorov scaling arguments, assuming that the grid-scale A
falls within the inertial range. Following K41 theory the scalar-dissipation spectrum X (k)
exhibits power-law scaling in the inertial range of high Reynolds-number turbulence as

X(k) ~ k. (2.8)

Thus the total amount of subgrid-scalar dissipation can be determined by integrating
the scalar-dissipation spectrum from the smallest-resolved scale ka to the viscous scale
ky,, giving
ky k 2
X9 = X (k) dk = kx° l (i) - 1] , (2.9)

ka
where
k= (1-a?)" (2.10)
Using (2.9) requires estimating the average magnitude of scalar-dissipation x® in the
resolved flow between filter scale A and some larger inertial-range scale o A. This may

be accomplished by determining the value of the scalar field ¢*, and then differentiating
the field locally to determine V(¢ and from this obtaining

X2 = —D V(A VA, (2.11)

For sufficiently small «, (2.11) provides a reasonably accurate estimate of the true non-
linear quantity x* given that the contribution of the scalar gradient magnitude at other
scale ranges to the product at scale A will be small at high Reynolds number (see Burton
& Dahm, 2004a).

Combining (2.9), (2.10) and (2.11), the subgrid-scalar dissipation magnitude distributed
over each grid cell may be described by a three-dimensional stochastic binomial cascade,
giving the amount of subgrid-scalar gradient magnitude in each inner scale cell as

1
2

N
IV ¢ |(x, 1) = | x*° 2¥)° [ Matx,t)| (2.12)
n=1
where A from (2.5) is the number of cascade steps, and the multipliers M,, correspond
to random samples from the scale-invariant distribution P(M) for the scalar-dissipation
field (e.g., Frederiksen et al. 1997, 1998). This leads naturally to a multifractal subgrid-
scalar dissipation field.
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2.3. The additive orientation cascade

As discussed in Burton & Dahm (2004 a), substantial experimental and computational
evidence indicates that the orientations of the subgrid velocity field are highly correlated
with the orientations of the u® field. (e.g., Bardina et al. 1983; Liu, Meneveau & Katz
1994; Domaradzki & Saiki 1997). For similar dynamic considerations, such behavior
should also be apparent within the scalar-gradient field V(. To test the extent to which
such correlations in fact exist, a DNS database of homogeneous isotropic turbulence
including passive-scalar transport was generated, using a third-order in time, fourth-order
in space finite-difference code. A series of initial simulations were made at a resolution
of 1283, corresponding to Rey = 55. These simulations were run until the field reached
statistical stationarity, approximately 5t,, where t, is the global eddy-turnover time.
Filter width was selected at A = 27w /16 approximately in the middle of the range over
which log-linear behavior in the scalar-energy fluctuation field spectrum was seen to
exist, as illustrated in Figure 1. Using this particular dataset, the correlations between
the A-scale and subgrid-scale orientations of the scalar gradient field V¢2/2 are found
to be p ~ 0.9.

Using these findings, it is then possible to describe an additive decorrelation cascade
by which the scalar gradient field V{ orientations decorrelate isotropically at successively
smaller scales from the local orientation of V{ A at the smallest resolved scale in the LES,
here denoted by the unit vector éé .- Between any two successive stages (n) and (n + 1)
in the cascade, the corresponding vorticity orientations (€),+1 and (&), thus deviate
by stochastic spherical decorrelation angles § and ¢. Each component of the orientation
unit-vector at stage (n + 1) is therefore determined as

(€)n+1 = (&i)n + fi(9,0)n+1, (2.13)

where f1(¢,0) = sin¢ cos8, f2(¢,0) =sin ¢ sinf and f3(¢,8) = cos¢ — 1. Since isotropy
requires 6 to be uniformly distributed, the § dependence will vanish trivially in the
expectation value (V{*%) of the stochastic subgrid vorticity field. The ¢ distribution on
the other hand should be strongly correlated with the multiplier values M.

Based on the above considerations, a scalar-gradient intermittency factor Z° can be
defined from a correlation between V¢*9° and V¢2 as

I’ =/ e v d3x'// [VCH* | |VEA | d® x (2.14)

The subgrid scalar gradient field V¢®9° after N cascade steps can then be expressed in
terms of Z°(N) as

N
V¢ (x,t) = |VEH <ZS(N) éé{(x,t) + (1-17°) Z&Z) (2.15)

where 4, are the scalar-gradient field decorrelation increments in the orientation cascade.
Owing to the stochastic nature of both the multiplier values M, in the magnitude
cascade and the decorrelation increments 4;, in the orientation cascade, the subgrid

scalar gradient V{®9°(x, t) is a stochastic field. From (2.15) its expectation value (V%)
involves correlations between the multipliers M,, and the increments 8. If the effect of
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FIGURE 1. Scalar energy spectrum
S(k) = fracl2¢*(k) from DNS database
with N = 128% and Rex ~ 55 used for the
a priori study of the multifractal model in
section 4, below. Inertial-convective range
scaling of S(k) ~ k%% is apparent over
at least one decade of length scales in the
dataset.
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FIGURE 2. Scatterplot of DNS vs. model
values for the filtered scalar concentrations
¢s9s, from DNS database of N = 128% and
Rey =~ 55. This is an important initial test
for the validity of the model set out in (2.24)
and (2.25). Model correlations are found to be
p > 0.90 for the particular conditions consid-
ered.

these correlations is taken to be negligible, then
N

—I°) (V) Y (87

n=1

(Ver) (2.16)

s ~A
= " (V) (Ve eg, + (1
Furthermore, if the decorrelation cascade is isotropic, then the expectation value of the
increments in (2.16) vanishes, giving from (2.12)
3
2

(VC7) = T (V)7 (M- M) E) (o) el

ve?

(2.17)
where x*9% comes from (2.9).

2.3.1. Inversion using Green’s Function

The expectation value of the subgrid scalar concentrations ({*9°) is obtained from the
corresponding subgrid scalar-gradient field (V{®°) in (2.17) via the Green’s function
approach, as

s95y . L / s9s

(o) =V g (9

Since the distribution P(M) of the multipliers in (V{*9%) is the same everywhere, from
(2.17) and (2.18) the expectation value becomes

1
o= x|

dx . (2.18)

(ngs)=I(N)(2N)%<(M1---MN)%>(’SZS)%V L[y 2es 1 g

i Jy v x—x]
(2.19)
The Green’s function integral in (2.19) is simply (2, giving with (2.5) and (2.9)
N 1

where we have also made use of the fact that the multipliers are statistically independent.
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From (2.20) the subgrid scalar concentration values (*9° can be written as
G (x,t) (V) ANV (B (x,1) (2.21)

where N §
A= 2 (MY [V - 1]? (2.22)

2.3.2. Final form of model

The intermittency factor Z° from (2.14) that appears in (2.21) is implied by the required
Rea-independence of (9% as Ren — oo. As correspondingly AN/ — oo this requires

T*(N) ~ Cg. 272N <M%>7N. (2.23)

The associated proportionality constant C7s should be universal, and can be obtained
from a priori testing using the DNS data discussed above, with the result that C'zs ~ 0.3.
Together with the multifractal model for the subgrid velocity components of (2.3) and

(2.4), this gives the multifractal model for the subgrid scalar flux vector o} as

o;  Du; (A + Bup ¢+ BD ub (A, (2.24)

where 1
2

D =039 2% [2% - 1] (2.25)
where B is given by (2.4), and where A is from (2.5). This involves only quantities

available from the resolved scales of the flow, thus closing the subgrid-scalar flux term in
the passive-scalar transport equation in (2.1) and (2.2).

3. Numerical implementation of the passive-scalar flux model

Each of the filtered product terms appearing in (2.24) and (2.1) is calculated using an
explicit Legendre box filter, following the method presented in Burton & Dahm (2004a).
In brief, this approach approximates each velocity component and scalar term by a three-
dimensional Legendre expansion, which for the resolved velocity component field is given
as

(%) & Y i (@) Bm(y) Bu(z) = Gi(x), (3.1)
and for the A-scale velocity component as

UJA(X) ~ Z bimn ‘I)I(SL') <I)m(y) <I>n(z)

lLym,n

Il
BN

<.
)

(3.2)

Legendre expansions for the resolved and A-scale passive-scalar concentrations, G* and
H?, are defined similarly. The filtered products in the subgrid-scalar flux vector o} in
(2.24) are then explicitly evaluated by integrating over the grid cell volume as

ui(A % /A3 Gi(x) H*(x)d>x (3.3)
udl ~ % N H,;(x) G*(x) d®x (3.4)
BB~ = [ M, (3.5)

A% Jps
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and similarly the explicit filter on the inertial term in (2.1) is evaluated as

R 1
Ui ¢ X 3 / Gi(x) G*(x) d®x. (3.6)
A3 Jas
Equations (2.24) — (3.6) allow evaluation of o} and the nonlinear term ﬁ in (2.1),
and together provide a complete statement of the multifractal subgrid-scale model for
large-eddy simulation of the mixing of a conserved passive-scalar.

4. A priori evaluation of the multifractal passive-scalar flux model

Because multifractal modeling of the subgrid passive scalar concentrations, like the
related velocity model, attempts to replicate the actual structure of the unknown subgrid
field, its performance in actual large-eddy simulations can be accurately assessed by a
priori testing, in which model values are compared with DNS or expermental data from
one realization of the given flow field. As a result, the model for the filtered scalar
flux term of the previous section was first tested in the a priori sense against the DNS
database described above.

The filtered scalar fields ¢ supplied to the subgrid-scale model were first used to con-
struct the subgrid scalar concentration fields from (2.21), and the resulting fields then
filtered at the scale A using the Legendre box filter to give the filtered subgrid scalar
concentration components (%95. As can be seen by the scatterplot in Figure 2, the model
values agree well with the DNS data, with correlations of p & 0.90. For purposes of an
actual large eddy simulation, the most relevant a priori comparison is of the subgrid
scalar flux vector o* from (2.24) and the complete scalar flux vector o, where

ol = ;¢ + DA + Bul + BDub (A (4.1)

As indicated in Figure 3, the subgrid scalar o* correlations exceed p > 0.9 (right column),
while for the complete scalar flux term o7 correlations exceed p > 0.995 (Pleft column).
The latter is the most relevant measure for an actual LES, since the complete o7 is
necessary to solve the passive-scalar transport equation, and since each term in (4.1)
is implicated in energy transfer to the subgrid scales. Finally, corrrelations were also
examined for the subgrid scalar energy production field, given by

¢
8:17]- )
As illustrated in Figure 4, correlations for that portion of the subgrid-scalar energy trans-
fer due to o* in (2.2) exceed p = 0.90, while for the complete scalar-energy production
field given by (4.2) correlations exceed p > 0.995. This indicates that at least for the
conditions considered here the multifractal model recovers the details of the spatial dis-
tribution of P*(x,t) with extremely high accuracy.

Ps = [ﬁﬂmjg/ﬁ +Bul( +BDub (A (4.2)

5. A posteriori evaluation of the multifractal passive-scalar flux model.

The multifractal model for the flux of a filtered passive scalar was next tested in actual
large-eddy simulations of forced, periodic, homogeneous isotropic turbulence with passive

t This is in contrast to eddy-viscosity methods, which cannot recover the details in the subgrid
stress or energy production fields, and thus in which a priori tests provide little guidance about
the model’s performance in an actual simulation.
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FIGURE 3. Scatterplot comparisons between DNS and model values for the full scalar flux o7

given by (4.1), and that portion of the scalar flux involving the subgrid scalar concentrations

¢*9° given in (2.2). Graphic indicates that correlations for o} exceed p = 0.9 (right column),
while correlations for ajT exceed p = 0.995 (left column). This indicates that the multifractal
model produces exceedingly accurate representations of the scalar-inertial stress o (z,t) needed

to solve the filtered passive-scalar transport equation of (2.1).

scalar mixing. The simulations were conducted at a resolution of N = 323, at Rey ~ 160
and a Schmidt number of Sc¢ = 1. Details of the computational setup as well as the use
of the backscatter limiter are given in Burton & Dahm (2004b).

The simulations were initiated by allowing an initial velocity field, randomized as
to phase and with a kinetic energy spectrum scaling of k=33 to reach a statistically
stationary state, after which the passive-scalar field was introduced to the calculation.
Various initialized states for the passive-scalar field have been implemented including
a double-delta p.d.f. with concentrations near 0 and 1, where 5(¢) = 0.56(¢ — 0) +
0.56(¢ — 1). Other simulations have been initialized with a normally distributed scalar
concentration field in which the scalar energy field exhibited the traditional inertial-
convective range power law scaling of S(k) ~ k~%/3. The simulations were then run to
varying final times t; where 4t, < ty < 20t,, where ¢, is the global eddy-turnover time.
Forcing for both the velocity and scalar fields is obtained by rescaling wave modes |k| < 2,
so that a constant energy is maintained in those wavemodes throughout the simulation.
Statistical measures were taken thereafter at a frequency of 2t, to guarantee statistically
independent samples of the flow field.

As illustrated in the time-evolution of the simulation in Figure 5 (top), the multifractal
passive-scalar model runs stably over nearly 12 eddy turnover times, indicating that
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FIGURE 4. Scatterplots of scalar-energy production field comparing DNS values against the
multifractal model given in (4.2). Graphic indicates that for the present DNS data, correlations
exceed p = 0.9 for P*° and p = 0.995 for the complete scalar energy production field P* in (4.2)
(left and right columns respectively).

the backscatter limiter for both the kinetic energy and scalar energy fields properly
maintains resolved kinetic and scalar energies at physically realistic levels. In addition,
the model reproduces the well-known result for flows where Sc = 1, that in the inertial-
convective range, the scalar energy spectrum exhibits a power law scaling where (2(k) ~
k=5/3, as shown in Figure 5 (bottom). This is a hallmark of high Reynolds number
turbulence, as are the deviations from the Gaussian distribution for the skew components
of the velocity gradient tensor illustrated in Figure 6. There it is evident that the flow
field exhibits significant intermittency indicated by the log-linear tails of the velocity
gradient magnitudes distributions. In addition Figure 7 illustrates the probability density
functions for the scalar energy production (left) and kinetic energy production fields
(right).

6. Future plans
6.1. LES of passive-scalar mizing with mean scalar gradient

Additional analysis must first be completed for the current case of forced periodic homo-
geneous isotropic turbulence. This includes evaluation of the scalar, scalar gradient and
scalar dissipation distributions generated by LES with the multifractal model for given
initial conditions of the scalar and velocity fields. Since the initial fields are randomized,
it is crucial to establish within rigorous statistical bounds the performance of the model
by running a number of simulations with constant parameters using different realizations
of the given initial fields.

Thereafter, the model will be evaluated in the more sensitive and well-documented
problem of high Reynolds-number turbulent mixing in the presence of a mean scalar
gradient. Several DNS studies have been conducted of this flow regime (e.g., Overholt &
Pope 1996) and will provide the data against which the LES simulations will be compared.
With a mean scalar gradient, the resolved-scale scalar energy equation is given by
10 =2 0 (-—— = -0 — 0 o¢ 0
33+ o (T + Twyomn — DT ) = (€ + wyomy) 5o =D 3 28

’ (6.1)
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FIGURE 5. Large-eddy simulation with passive scalar mixing for N = 323, Rey ~ 160 and Sc = 1.

(Top frame, top to bottom:) Evolution of resolved passive-scalar energy EQ, passive-scalar energy
production P?, resolved kinetic energy E¥, and kinetic energy production P*9¢, indicating that
with the multifractal model and backscatter limiter the simulation runs stably to long integrated
times. (Bottom frame:) Energy spectrum for resolved scalar concentrations %C_z, exhibiting the

power law scaling S(k) ~ k~%/3 characteristic of the inertial-convective range in high-Reynolds
number turbulent scalar mixing.

where the total scalar field is expressed as
C(x,t) = (¢ +¢9%) (x,1) + azg, (6.2)

and where a represents the mean scalar gradient imposed in the kth component direc-
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FIGURE 6. Probability distributions of the velocity gradient tensor from the LES of passive
scalar mixing at N = 32% and Re, ~ 160 and Sc = 1.0. Note the significant deviation of the
off-diagonal p.d.f.s from the Gaussian (dotted) indicating that the model is recovering significant
intermittency seen in the resolved scales in real high Reynolds number turbulent flow, some three
to four orders of magnitude smaller than the mean.
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FIGURE 7. Probability distributions of the scalar energy production (left) and kinetic energy
production (right) for LES using multifractal model developed in this paper.

tion. From (6.1), it is apparent that the mean gradient o imposes an additional source
term on the scalar energy equation by the scalar flux working against the mean scalar
gradient (Overholt & Pope 1996). Prior DNS studies have shown that the normalized
scalar variance, dissipation time ratio, and the ratio of subgrid-scalar energy produc-
tion to total scalar-energy dissipation all become independent of Reynolds number above
Rey > 180. In addition, it has been demonstrated that the skewness of the scalar gradient
in the direction of the imposed mean gradient may grow smaller with increasing Schmidt
number (Yeung et al. 2002). The accuracy of the multifractal model will therefore be
evaluated in the context of these well-established measures of passive-scalar mixing in
fully developed turbulent flow with a mean scalar gradient.



156 G.C. Burton

6.2. LES of free round jet with passive-scalar mizring

Finally, the multifractal model will be incorporated into the modified JETCODE de-
scribed in Burton (2004), so that the present modeling approach may be evaluated in
the context of simulations involving passive-scalar mixing in a free round turbulent jet.
Since turbulent jets are encountered in many practical combustion applications such as
turbines, furnaces, and rocket engines, this configuration will provide an important test
of the efficacy of multifractal modeling for a variety of practical turbulence modeling
problems using large-eddy simulation.
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Large-eddy simulation of a free round jet using
multifractal subgrid-scale modeling

By G.C. Burton

1. Motivation and objectives

The free round turbulent jet is perhaps the most extensively studied of the canonical
free-shear turbulent flows. Turbulent jets are important to a variety of industrial appli-
cations such as fuel injectors, furnaces, and rocket engines. Owing to the difficulty, time
and expense of conducting experimental studies of most turbulent flows, numerical sim-
ulation of the turbulent jet has been increasingly used to guide design and development
work at the industrial level. It has also provided numerous insights into fundamental
physical laws governing such flows. Reynolds-averaged Navier-Stokes (RANS) studies of
such jets, in which only the time-averaged mean flow is explicitly calculated, have been
used extensively in the past, but remain of only limited accuracy, and thus of limited
usefulness, in the industrial design process. On the other hand, fully resolved studies
(DNS) of turbulent flows, which could provide the needed precision, will remain for most
flows encountered in engineering practice far beyond the capability of the most pow-
erful computers for some decades to come. Midway between DNS and RANS lies the
approach of large-eddy simulation (LES), which explicitly calculates the large-scale tur-
bulent structures, while modeling the smaller unresolved scales. An accurate model for
the small scales is needed for LES to provide a reliably accurate tool for practical tur-
bulent flow problems. Most current models rely on an eddy-viscosity assumption that
the smallest-resolved eddies in an LES remove energy from the resolved flow much like
molecular viscosity at the smallest continuous scales in actual turbulence. Such models,
even if roughly capturing the integrated transfer of energy to the subgrid scales, cannot
reproduce the detailed spatial structure of the true energy transfer field P(z,t).

Recently Burton & Dahm (2004 a,b ) have proposed a multifractal subgrid-scale model
that does not rely on an eddy-viscosity assumption, but instead is derived from the
multifractal structure of the vorticity field in high Reynolds-number turbulence. From
this, a new, highly accurate model for the subgrid velocity field u;’* has been proposed
that permits explicit calculation of the nonlinear term w;wj, thus closing the filtered
Navier-Stokes equations. Prior LES of forced homogeneous isotropic turbulence using
the multifractal model indicate that stable and remarkably accurate simulations may
be obtained, including recovery of the detailed spatial structure of the subgrid energy-
production field P*9%(x,t), with p > 0.995 (Burton & Dahm 2004b). The work reported
in the present paper involves refining and evaluating the accuracy of the multifractal
model in the significantly more complex configuration of a free round turbulent jet.

2. Overview: Multifractal subgrid-scale modeling

A full development of multifractal subgrid-scale modeling for LES is given in Burton
& Dahm (2004 a,b). Only the most important aspects of the modeling approach are
summarized here.
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2.1. The subgrid-scale model

Multifractal modeling derives a representation for the subgrid velocity field u®¥°(x,t)
from a representation of the subgrid vorticity field w?®9%(x,t) using the Biot-Savart op-
erator. The resulting subgrid velocity field is then used to solve explicitly the subgrid
stress tensor 7; using the form of the filtered momentum equation given by

0u; 0 10p 0%u; 0
EANIRNCA 5% PRt A R . 2.1
ot * Oz ity + p Ox; V@a:? Bz, 21)
where
T = Tuy? + oy +ou? et (2.2)

The derivation begins by noting that the enstrophy field 3 w - w(x,t) in high Reynolds
number turbulence exhibits multifractal scale similarity over inertial range scales. There-
fore, the spatial distribution of subgrid vorticity magnitude |w®9%|(x,t) may be described
by a multiplicative multifractal cascade. Similarly, DNS data indicates that the distri-
bution of subgrid vorticity orientations e**’"(x,t) may be represented by an additive
orientation cascade by which the subgrid vorticity field decorrelates isotropically from
the smallest resolved field w?™(x,t). The subgrid velocity field u®9*(x,t) may then be
determined by applying the Biot-Savart operator to this representation of the subgrid
vorticity field. Since both the magnitude and orientation cascades are stochastic in na-
ture, the resulting integral can be evaluated using probabilistic concepts with the result
that the subgrid stress tensor 7; may be modeled as

T?“.@B(ﬂiujA—l— HjuiA)—}—BQ uiAujA, (2.3)

where

D=

B = 047 2% [2% - 1] : (2.4)

N represents the number of cascade iterations within the subgrid field given by
N = log,(A/N). (2.5)

and where u is the velocity field associated with the smallest resolved scale A. This
involves only quantities available from the resolved scales of the flow, thus closing the
subgrid-stress term in the momentum equation in (2.1).

Each of the filtered products represented by the long overbars in (2.3) is explicitly
evaluated as

1

HiujA N A3 . Gi(x) H;(x) d*x (2.6)
1

uf uft ~ A /. Hi(x) H;(x) d>x, (2.7)

and the filtered product of the resolved velocity components in (2.1) is similarly evaluated
as

1
uu; N A5 /As Gi(x) G;(x) d3x. (2.8)

The functions G;(x) and #;(x) are, respectively, Legendre expansions of @;(x) and u£*(x)
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as
TG & Y aimn Bi(@) Buy) Balz) = Gi(%) (2.9)
lL,m,mn
uzA(x) ~ Z blmn (I)l(x) @m(y) én(z) = Hi(x)a (210)
lL,m,n

where the required cell-centered values of u* are obtained from the cell-centered values
of w;(x) as

u® = T — agoo. (2.11)
Equations (2.1) and (2.3) — (2.11) give a complete statement of the multifractal model
for large-eddy simulation.

2.2. Backscatter limiting

Numerical errors introduced in the resolved scales during an actual simulation are reduced
by introducing an explicit backscatter limiter in the flow calculation. This effectively
decouples the role of the subgrid model from the additional burden of controlling the
numerical error. The backscatter limiting is implemented by a small reduction in the
local magnitude of only those stress components that contribute to local backscatter of
energy from the subgrid scales to the resolved scales. Since P = P* + P!, where

P*(x,t) = — 135 Sy (2.12)
and
PR(X,t) = —U; Uy g,'j, (2.13)

the limiter first calculates each of the terms P(;;) that contribute to the local subgrid
production as

Pij = — (ﬁ(z’) UG + T(*Z-j)) S(ij) » (2.14)
where the subscript parentheses indicate that no summation is implied. Any of the local

P(ijy terms that are negative will contribute to local backscatter of energy, and thus only
those terms are reduced as

Paj) = (1 = Cp) Pujy » (2.15)

where 0 < Cp < 1 is a prescribed backscatter-limiter coefficient. This has the effect of
locally reducing the contribution to backscatter into the resolved scales by the amount
Cs P(ij), which is largest where P(;;) is most strongly negative and thus where the
numerical errors are presumably also largest.

To implement this in the momentum equation in (2.1), for each (ij) in (2.14) for which
Pijy <0, the corresponding production term P(;;) is effectively replaced with ﬁ;) from
(2.15), by replacing the corresponding u(;) u(;) in (2.1) with the backscatter-limited value

—

U ag) = (1 — Cp) ug)ug), (2.16)
and replacing the corresponding 7'(*l. i) in (2.1) with the backscatter-limited value
) = (1= CB) (). (2.17)

Altering the components in the momentum equation in this manner is equivalent to
backscatter-limiting the subgrid energy production field P(x, ¢) asin (2.15). Note that the
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limiter procedure could alternatively be implemented by an analogous forward-transfer
accelerator, in which the backscatter reduction is replaced by a forward-transfer acceler-
ator factor (1 + Cx) for each (ij) in (2.14) for which P(;;y > 0.

3. Adaptive backscatter limiting for LES
3.1. Motivation

Prior studies have indicated that a backscatter reduction factor of Cp = 0.15 provides
reasonably optimal control of resolved energy levels for the specific case of periodic forced
homogeneous isotropic turbulence for a resolution of N = 322 and a grid-cell Reynolds
number of Rea & 160 (Burton & Dahm 2004b). However, in the more complex configu-
rations seen in practical engineering development work such as the turbulent round jet,
spatial and temporal variation in flow conditions may be significant during the simulation.
As a result, it may prove advantageous to vary the value for Cz during the simulation.
Thus before the multifractal model was used in an LES of a round jet, a method was
developed and tested for adaptively determining the value for the backscatter coefficient
Cj. This adaptive approach is shown to eliminate globally numerical errors in subgrid-
energy transfer during a simulation or to reduce local errors to the order of the spatial
derivative operators.

3.2. Resolved energy transport

The kinetic energy of the resolved velocity field £(x,t) = %ﬂiﬂi, as implemented in the
multifractal model evolves according to

7] 0

The flux vector R; is given by
_ — = " _D o9&
Rj(x,t) = — | @ (Wu; + 75;) + Ui;‘sia‘ "V o, | (3-2)

which appears in (3.1) in divergence form and thus has no effect on energy transfer
between the resolved and subgrid scales. Only the resolved viscous dissipation D defined
as

D(X, t) = 2v gz’j gij (33)
and the subgrid energy production P defined as
P(X,t) = — (ﬂiﬂj + T;;) gij, (3.4)

contribute to the exchange of energy between the resolved and subgrid scales. The subgrid
production P in (3.4) may be broken down further into components contributing to the
forward transfer of energy P 7°™ where,

plorw — ZP(,'J') VP(,'J') >0 (3.5)
and backscatter P b2ck where
fpbadc = Zp(ij) VP(ij) <0 (3.6)

and where in (3.1)
P(x,t) = P17 (x,t) + P (x,t). (3.7)



Multifractal LES of Round Jet 161
This gives the final energy transport equation as

0 0

o E(x,t) = Bz,
j

at [RJ] - D — (rpforw +rpback) . (38)

3.3. Implementation of adaptive backscatter limiter
We can however adaptively select a local backscatter reduction coefficient Cp(x,t) as
follows. Equation 3.8 with the backscatter limiter can be stated as

0 o

g ft) = 5, [Ril =D = (PFore 4 (1 = Cp) Phack). (3.9)

ot
with all terms similarly defined as in the previous section. First, a target value is selected
for energy transfer at a given location, which is taken to be the exact amount of resolved
energy desired at a particular location at the next timestep as £¢2%¢t(x, t) = £V (x, 1).
This target value may be taken from the value predicted by the multifractal subgrid
model itself or from some other estimate, such as for example that predicted by the
dynamic Smagorinsky model. With an initial guess for the coefficient as Clg"), the flow
solver is then advanced one step in time giving an estimated new value for the resolved
energy £* as

o (n)
EW(x,t) = EM + At|——[R;] =D — Plov g (1 - cg")) Pback] , (3.10)
6.%']'

where [ is a relaxation factor, that may nominally be set to § = 1. Note, however,
that in general the resulting value £*)(x,t) # £¢%2¢t(x, t), due to the effect of numerical
errors such as aliasing. Therefore, the error between this actual and the intended final
kinetic energy is defined as

e = EM(x,t) — £°70°(x, ¢). (3.11)

Usually € > 0, although this need not be the case. The numerical error now may be
eliminated by adjusting the backscatter coefficient Cg in (3.10) through an iterative
scheme described below. First, a new value for the coefficient for the next iteration is
determined as

ot = oY + ACs, (3.12)
where
n+1) _ €
ACE™ = S (3.13)

with € and P%¢* as defined above. Using the new value 01(3"+1), the estimated new
energy may be calculated according to (3.10). This will produce an updated value for
the energy transfer error € in (3.11). The iteration scheme thus consists of iterating on

the backscatter coefficient C’é") value, as defined above until ¢ — 0. This method is
essentially a Newton-Raphson iterative scheme with

F(z™)
F'(zm)

n

= g™t (3.14)

where the backscatter coefficient provides

" = oW, (3.15)
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FIGURE 1. Rapid convergence to machine zero is evident for the iterative method described in this
paper. (Large dots:) iteration with no relaxation. (Small dots:) iteration with small relaxation
factor 8 = 1.01.

and the error in the final kinetic energy provides
F(z) = e (3.16)

It can be shown that the iteration scheme converges to a unique solution if C% is
selected even with only marginal accuracy. Studies run to date indicate that iteration
with some relaxation will very quickly drive ¢ — 0, as indicated in Fig. 1, below. The
present method applies to the solution for a single global value of Cj, in which all flux
terms R; in (3.10) sum to zero at the domain boundaries according to Gauss’ theorem.
The method also applies to a solver which employs a collocated storage arrangement for
primitive flow variables, so that a unique value for the kinetic energy of the resolved
scales can be determined in each computational control volume. If the scheme is used to
solve for such a local value, the iteration scheme will only converge to the order of the
error of the flux term.

On a staggered grid, in which separate control volumes are defined for each primitive
flow variable (Harlow & Welch 1965), the method in (3.10) must be modified so that
separate iterative systems are solved simultaneously for components of kinetic energy in
each of the three coordinate directions. The transport equation for the i-th component
contribution to kinetic energy is then given by

0 ¢ -9 Di — Py — W 3.17
ai(xat)—%j[(i)j]_ i — Pi — Wi. (3.17)
where R(;); is the i-th component of the flux vector in (3.2), and D; and P; are those
portions of the dissipation and subgrid production fields that involve the #-th components
of the fields in (3.3) and (3.4), respectively. The term W; involves the interaction of the
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stress field w; w; with the +th components of the rotation tensor 2;; as

W, = U ;) Uj Q(i)j (3.18)
where the rotation tensor is given by
1 (Ou; Ouy
0 = = 5 _ 2 3.19
lJ 2 (8.’171 61’j ) ( )

and where the parentheses in (3.18) again indicate that summation is not implied over
the particular component direction. The term in (3.18) accounts for solid-body rotation
within the fluid that moves kinetic energy from one component direction to another. The
iteration scheme of (3.10) on a staggered grid is then given as

(n)
gi(*)(xat) = gi(n) + At [i [Rey;] — Di = W; — plor (1 - 01(3")) Pib‘wk] )

81']'
(3.20)
4. Differential backscatter limiting

The backscatter-limiter methodology has also been modified to more precisely capture
the transfer of energy across all the resolved scales in the flow. This modification makes
use of the significant information about the stress field contained in the product of the
Legendre expansions in (2.6) — (2.8), and involves applying a backscatter reduction factor
that varies with the order of each term within the Legendre product expansions.

4.1. Qverview of approach

Because the multifractal model calculates the inertial stresses in (2.6) — (2.8) as volume
integrals of the products of the Legendre expansions of the velocity component fields,
the model simply consists of a linear summation of monomial terms. Thus, for example
the cross-term stress in (2.6) can be expressed as

N
1

Tl = (@50, ) goc? i1

wuf = /A3 n§:1 v (:cz z; Ty )n x°, (4.1)

where (a), (b), (c) are the exponents representing the order of the term in each component
direction, and ~ represents the coefficient of the particular monomial term, with simi-
lar expressions for (2.7) and (2.8). Since the integration in (4.1) is symmetric about the
canonical Legendre interval I = [—1, 1], odd-order (antisymmetric) terms will vanish in
the integration. Thus the summation in (4.1) involves terms containing various combina-
tions of constant, 2nd, and 4th order variables in each of the three coordinate directions
z;. Note also that any 4th order term appearing in (4.1) is generated only through the
multiplication of the Legendre expansions and cannot arise directly from the Legendre
expansions in (2.9) and (2.10) themselves, which of course contain basis functions up to
second order. Such 4th-order terms correspond to aliased frequencies within the product
summation.

4.2. Implementation of differential backscatter limiting

Rather than applying a constant backscatter-reduction coefficient Cz to all terms in
(4.1) as has been done previously (Burton & Dahm 2004), the present approach instead
applies different Cz reduction factors to individual summation terms depending on the
order of the given term in (4.1). A number of variations were evaluated to determine
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FIGURE 2. Resolved energy spectrum FE(k) from LES of forced, periodic homogeneous, isotropic
turbulence where N = 32 and Rea = 160 with differential backscatter limiting described in
section 4. Spectrum follows closely the K41 scaling E(k) ~ k~5/3 over essentially the entire
resolved spectrum.

the combination producing the most physical distribution of kinetic energy across all
resolved wavenumbers. For the purposes of the free-round jet simulation, the following
approach distributed kinetic energy within the resolved scales in closest accordance with
classical equilibrium inertial range scalings:

e Non-aliased terms contributing to backscatter are left unchanged. Thus, where a, b
and ¢ < 2,

v (sign( )x(a)a:(b)a:(c)) Sij >0 = Cp=0.0. (4.2)

o Aliased terms contributing to backscatter are completely eliminated. Thus, where
a, bor ¢c = 4,

v (sign( )a:( )m(b)mi ) Sij >0 = Cp=10. (4.3)

e Aliased terms contributing to the forward cascade of energy are amplified. Thus,
where a, b or ¢ = 4,

v (sign( )x(a)a:(b)m(c)) Sij <0, = Cr=3.0. (4.4)

e Non-aliased terms contributing to the forward cascade of energy are left unchanged.
Thus where, a, b and ¢ < 2,

v (sign( ) z{® )x(”)x“’) Sy <0 = Cr=00. (4.5)

As illustrated in Fig. 2, the use of backscatter reduction that varies as a function
of term order as described above produces an energy spectrum exhibiting Kolmogorov
inertial-range scaling throughout the resolved scales.
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FIGURE 3. Detail of inlet geometry for turbulent jet for 128 x 64 x 64. Cartesian mesh is used
to retain the high accuracy of the Legendre interpolation matrices. A physically accurate inlet
condition will be established by appropriate volume averaging of the inlet profile for those inlet
cells intersecting the maximum inlet radius D = 7.

5. LES of a Free Round Turbulent Jet.
5.1. Configuration and setup.

Using the refinements to the multifractal subgrid-scale model discussed above in Sections
2 - 4, the structured JETCODE produced at the CTR has been modified to the following
configuration to conduct the simulation of the free round turbulent jet. Initial validation
simulations are being run at a resolution of 128 x 64 x 64 on a regular Cartesian mesh.
The regular mesh has been selected because it allows a single well-conditioned inverse
Legendre matrix to be defined throughout the flow domain, which produces exceedingly
accurate estimates for the resolved and A-scale tensor-product expansions in (2.9) and
(2.10). The regular mesh also permits the use of 4th-order centered spatial derivative
operators, permitting more accurate determination of the divergence of the backscatter
stresses and the related resolved strain-rate fields. Time advancement is with a fully
explicit 3rd-order Runge-Kutta scheme. The flow domain is periodic in both cross-stream
coordinate directions, and set 7 D from the centerline, where D is the width of the jet.
This configuration has been shown to adequately minimize the impact of the cross-stream
periodicity on the downstream development of the jet (da Silva & Métais 2002).

Inflow conditions will consist initially of a core plug flow with constant velocity Upean,
and a co-flow in the remainder of the inflow plane of Ucy = 0.1 Upeqn- As illustrated
in Figure Fig. 5.1, inlet grid cells intersecting the maximum jet radius ( i.e., r =
D) will contain an appropriate volume-averaged fraction of Ueqn t0 ensure accurate
implementation of the plug inflow condition. A second inflow condition will also be tested,
consisting of the hyperbolic tangent profile (Michalke & Hermann 1982) for the jet core,
which has been shown to be a realistic approximation of the actual inlet conditions found
in experimental investigations (Freymuth 1966).
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This condition is given by

— 1
Unmean(To,7) = Uo + Ues — Uo — Ues tanh [—E (L — E)] ) (5.1)

2 2 460, \ R r

where U, is the centerline jet velocity, Ucy is the co-flow velocity and 6, is the momentum
thickness of the initial shear layer.

5.2. Model evaluation

Once the initial validation of the modified JETCODE is completed, the accuracy of the
multifractal model will be evaluated in direct comparisons with the experimental data
of Hussein et al. (1994) and others for those statistics traditionally used to evaluate
turbulent jet evolution in the self-similar region. These include: (1) linear evolution of
jet half-width with downstream location, given by o5 (x) /D = Ca[f — E]; (2)
decay of the centerline velocity, given by Byt = U,/ (uz(z,r = 0)); (3) streamwise-
normal mean velocity profiles, given by (U(r) — U.s) / (U, — Uey) as a function of n =
r/(x — z,); (4) streamwise-normal Reynolds stress profiles for: streamwise normal
stresses u2 / (U,—U,y)?, radial normal stresses u2 / (U,—U.s)?, tangential normal stresses
u2 / (U, —U,y)?, and streamwise-radial cross stresses u u, / (U, —U,¢)?; (5) downstream
evolution and return to isotropy of the centerline Reynolds stresses u2 (z)/ (U,—U.y)? (z).
These measures will provide a stringent quantified evaluation of the accuracy of multi-
fractal modeling in the important and complex case of a free round turbulent jet.

5.3. Additional studies: jet with passive-scalar mizing

In many combustion problems, such as those arising from the development of systems
like the rocket engine, gas turbine and internal combustion engine, the efficient mixing of
fuel and oxidizer is accomplished through the use of turbulent jets, whose ability to mix
fuel and oxidizer often largely determines the efficiency and stability of the combustion
process. LES of such turbulent reacting flows often employ models for local reaction
in the subgrid scales that are parameterized by resolved-scale quantities such as the
filtered scalar concentrations (), the filtered scalar variance (C'2), and the filtered scalar
dissipation rate (2DV( - V() ( See, e.g., Rajagopalan & Tong 2003).

With the completion of the tests described above in section 5.2, the jet flow solver
will be augmented with the related multifractal model for the filtered passive-scalar
transport equation. That model, whose derivation and initial tests have been described
elsewhere in this volume (Burton 2004), uses the multifractal structure of the passive-
scalar energy dissipation field in high Reynolds number turbulence to close the filtered
passive-scalar transport equation. Tests will compare the accuracy of the model against
experimental or DNS data for the behavior of the scalar and scalar dissipation field in
the scale-similar region of the jet (Dowling & Dimotakis 1990; Dowling 1991). Statistics
to be evaluated will include (1) scale similarity of the normalized scaled concentration
field, scalar variance and scalar dissipation rate versus scaled radial component n =
r/(z — z,), (2) scaled power spectra for scalar variance and scalar dissipation fields at
given downstream and cross-stream locations and (3) probability density functions of
scalar concentrations and scalar dissipation rates at the same downstream and cross-
stream locations. Such measures will provide a rigorous evaluation of the accuracy of
multifractal modeling for turbulent mixing in a complex shear flow seen in a wide range
of practical engineering applications.
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Identification of an internal layer in a diffuser

By X. Wu, J. Schluter, P. Moin,
H. Pitsch, G. Iaccarino AND Frank Ham

1. Motivation and objectives

Identifying regions of self-preservation in representative non-equilibrium flows is useful
for basic fluid mechanics as well as engineering computation. Townsend (1976) discussed
the process that sudden changes in external conditions in boundary layers may result in
an internal boundary layer that spreads from the section of change, and the layer outside
the internal layer develops in almost the same way as in the original flow. Experimental
evidence in support of this observation includes the boundary layer over a curved hill
(Baskaran et al. 1987), and the boundary layer over a bump (Webster et al. 1996). In
Baskaran et al., streamwise pressure gradient changes rapidly from adverse to favorable
at the leading edge, and separation occurs downstream of the summit. Internal layer
was found downstream of the leading edge. The flow of Webster et al. remains attached,
its streamwise pressure gradient changes suddenly from adverse to favorable at both
the leading and trailing edges and internal layers were identified downstream of these
two locations. They considered signatures of internal layer as knee points in the wall-
normal profiles of streamwise turbulence intensity. In these two studies knee points emerge
when the outer peak of streamwise turbulence intensity associated with upstream adverse
pressure gradient decays rapidly under favorable pressure gradient and an inner peak
establishes as a result of the internal layer. Obviously this process of knee point formation
is specific to the hill or bump type of flows in which upstream strong adverse pressure
gradient changes suddenly to favorable at the leading/trailing edges.

This paper describes an internal layer identified from an incompressible turbulent
diffuser flow, as opposed to the internal layers previously identified in external boundary
layer flows. The present internal layer emerges in the relaxation zone downstream of
a sharp variation in streamwise pressure gradient: from mildly favorable to strongly
adverse, then weakly adverse. Unlike those in Baskaran et al. and Webster et al., the
present internal layer does not display significant spreading into the central region of the
flow. The flow in the region where internal layer forms exhibits certain characteristics
similar to those observed the C-type of Couette-Poisuille turbulent flows.

Two laboratory incompressible diffuser flows have emerged in a number of fundamental
and modeling studies on spatially developing complex internal turbulent flows, namely,
the Azad diffuser (Azad 1996) and the Obi diffuser (Obi et al. 1993). The Azad diffuser
is an axisymmetric conical geometry with a total divergence angle of 8° and with fully
developed pipe flow at the inlet. The inlet Reynolds number based on friction velocity and
pipe diameter is 12,400. Extensive measurements have been performed on this flow by
Okwuobi & Azad (1973), Trupp et al. (1986) and Azad & Kassab (1989), among others.
They found that sudden application of adverse pressure gradient at the diffuser throat
affects the flow so drastically that the downstream mean and turbulent fields become
unrecognizable in relation to the inlet condition. The Obi diffuser has an asymmetric
planar configuration with a total expansion ratio of 4.7 and a single sided deflection wall
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of 10°, see figure 1. The inlet was designed to be a fully developed turbulent channel flow,
though in some of the experiments this condition was not achieved. The inlet Reynolds
number based on friction velocity and channel half height is 500. Obi et al. (1993) studied
the flow experimentally using a single component laser-Doppler anemometer. Buice &
Eaton (1997) made hot-wire and pulsed-wire measurements in the Obi diffuser. Lindren et
al. (2002) made measurements on a slightly modified geometry based on the Obi diffuser
at a higher Reynolds number to study the control of flow separation. Lim & Choi (2004)
performed shape optimization using the Obi diffuser as the base flow configuration. The
Obi diffuser has also been used as a test flow in a number of computational studies. These
include the Reynolds-averaged simulation of Durbin (1995) and Iaccarino (2001), as well
as the large eddy simulation work of Kaltenbach et al. (1999). Previous investigations
in the Azad diffuser emphasized the process of instantaneous flow reversal (Azad 1996):
note that their time-averaged flow is not separated. Likewise, work in the Obi diffuser
emphasized the unsteady process of separation on the lower deflected wall, e.g., see
Kaltenbach et al. (1999). The focus of the present study is on the discovery of an internal
layer over the upper flat wall of the Obi diffuser, a subject that has eluded attention in
the previous diffuser studies which have focused on separation and reattachment over the
lower deflected wall.

Aside from the obvious outstanding issue of identifying internal layers in internal flows,
further flow physics questions can be raised with reference to the conditions under which
internal layers may form, and the statistical and structural features of the internal layer,
as well as possible connection between turbulent fluctuations inside internal layer and
identifiable large scale motions in the central region of the flow. In addition, from the
view point of basic fluid mechanics it is of interest to query whether it is possible to
relate the characteristics of internal layer with any well-known fundamental equilibrium
component flows. Furthermore, the original process described by Townsend (1976) needs
further scrutiny: Does the layer outside the internal layer develop as in the original
unperturbed flow? Does the internal layer emerge right at the streamwise section of
change? In this work we attempt to address these flow physics questions using large eddy
simulation.

2. Computational details

We consider incompressible fluid flow with constant density p in the Obi planar diffuser
shown in figure 1. Unit length scale is h, the inlet channel half-height. The two transitional
curvatures between the parallel walls and the inclined wall have the same radius of
19.4. The origin of the coordinate system is at the intersection of the deflected wall and
the lower inlet channel wall. The curvature center associated with the upstream curved
section is located at (x = —1.7, y = —19.4). The curvature center of the downstream
curved section is at (x = 43.7, y = 12.0). The inlet plane is located at x = —5, and the
outlet plane at x = 100. Spanwise dimension of the computational domain is 8h.

Unit velocity scale is defined as the friction velocity v* at the inlet. This then defines
the unit time scale as h/u%__,. Reynolds number Re based on the unit length h and
unit velocity u’__5 is 500. As in previous studies of the Obi diffuser, e.g., Buice & Eaton
(1997) and Kaltenbach et al. (1999), the majority of the results to be presented in this
paper were normalized by the inlet bulk velocity u, defined as the area-averaged mean
streamwise velocity at the = —5 station.

The numerical methodology used to solve the filtered continuity and momentum equa-



Identification of an internal layer in a diffuser 171

10}
> Of
" i L 1 ! I ! | L ! ! | ! L ! J
10 0 20 40 60
X

FI1GURE 1. Cross-section of the asymmetric planar diffuser; the exit is at x = 100.
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FIGURE 2. H;ms Jup versus y at x = 11.96 showing the effects of resolution and subgrid scale
model on LES results. o Buice & Eaton (1997); solid line: fine resolution; dashed line: coarse
resolution; dotted line: coarse resolution without subgrid scale model.

tions is the unstructured fractional step method for large eddy simulation in complex
geometries of Mahesh et al. (2004) with the dynamic subgrid-scale procedure of Ger-
mano et al. (1991). Velocities at the inflow boundary plane, z = —5, are from a separate
LES of fully developed channel flow at Re = 500. Simulations were performed on two
sets of hexahedral meshes. The fine mesh has 590(z) x 100(y) x 110(z) control volume
cells. The coarse mesh has 360(x) x 80(y) x 80(z) control volume cells. Figure 2 shows
the effects of grid resolution and subgrid-scale stress model on predicted rms velocity at
z = 11.96.
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FIGURE 3. Wall static pressure coefficient Cpy. Kaltenbach et al. (1999): o (lower wall); o
(upper wall). Present LES: dotted line (lower wall); solid line (upper wall).

3. Results and discussion

Planar and conical diffusers have broadly similar wall static pressure distributions.
A mildly favorable pressure gradient turns to sharply adverse at the diffuser throat,
followed by a gradual decrease in the magnitude of adverse pressure gradient further
downstream. Such similarity can be appreciated by comparing the C,, results for the
Obi diffuser in figure 3 with figure 4 of Okwuobi & Azad (1973) for the axisymmetric
Azad diffuser. In figure 3 the change from strongly adverse to weakly adverse pressure
gradient starts near £ = 10, and in Okwuobi & Azad (1973) similar transition takes place
approximately 8 pipe radii downstream of the throat, though the leveling off of Cp,, is
not as distinct as in the Obi diffuser. This pattern of Cp,, for incompressible diffuser flows
may be contrasted with the behavior of C,,, found in the hill/bump flows of Baskaran et
al. (1987) and Webster et al. (1996). In Webster et al. there are two adverse to favorable
pressure gradient changes where signatures of internal layers emerge. The magnitude of
their favorable pressure gradient decreases further downstream of the trailing edge. The
diffuser flow and the bump flow both experience sharp variation in streamwise pressure
gradient followed by downstream relaxation. The difference is that the signs of the sudden
changes are opposite. Given the fact that internal layer exists in the scenario where Cj,,
is from adverse to favorable, a query which naturally presents itself is whether internal
layer can be found in the other scenario.

Skin friction coefficient C'y over the upper flat wall in the Obi diffuser displays a long
plateau extending from z = 15 to 45 (figure 4). The plateau is bound by a sharp drop
from z = 0 to 10 upstream and a more gradual decline downstream of z = 45. In the
plateau region, friction velocity is approximately 0.43, and 1 viscous wall unit corresponds
to 0.0047h. Broadly similar streamwise variation of Cy exists in the Azad diffuser, see
figure 17 of Azad (1996). Though in his flow the sharp drop of Cy near the diffuser throat
is followed by an additional slower decrease rather than a distinct plateau. In Webster
et al. (1996) two sudden jumps in C are found at the locations where pressure gradient
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FIGURE 4. Skin friction coefficients. Buice & Eaton (1997): o lower wall, e upper flat wall;
solid lines are from the present LES.

changes from adverse to favorable. Downstream of their trailing edge C settles into a
minor descending slope and signature of internal layer is distinct in this region. Abrupt
increase in Cy implies quasi-step changes in the near-wall mean velocity gradient. Thus,
production terms which are directly dependent on this gradient in the transport equations
for second-order turbulence statistics will be expected to show large increases in the near-
wall region, for example, streamwise intensity. The argument that a quasi-step increase
in Cy selectively modifies near-wall shear production of turbulent stresses and leads to
signatures of an internal layer explains well the internal layers identified in Webster
et al. (1996) and Baskaran et al. (1987), but is not directly applicable in the present
diffuser flow. This is because near the upper flat wall of Obi diffuser there is no quasi-
step increase in C. Instead, C; has a prolonged plateau which is preceded by a rapid
decrease. Although the overall trend of C in the Obi diffuser is drastically different from
that in the Webster bump, both flows nevertheless show regions of stabilized positive skin
friction downstream of sections of sudden change. Again, the signs of the sudden changes
are opposite. The stabilized C'y in the relaxation region suggests newly established level
of near-wall mean velocity gradient, which may be the driving factor in the formation of
an internal layer. Obviously if the sharp drop in Cy on the upper wall of the Obi diffuser
is severe enough to cause separation there can be no internal layer. It is expected that
internal layer, if it does exist in the Obi diffuser, will be less pronounced than that in
the bump flow of Webster et al. (1996).

The newly established level of near-wall mean velocity gradient after sudden change
implied by figure 4 can be more directly seen from figure 5 and figure 6 in which (@) /u,
at a number of z stations is plotted against the y coordinate. Experimental data of Buice
& Eaton (1997) and Obi et al. (1993) are also shown for comparison. For example in
figure 6 the near-wall slope of (@)/up decreases from =z = 6.4 to 10.4, remains nearly
constant from z = 18.4 to 38.4, and decreases further from z = 42.4 to 58.4. The mean
velocity distributions are consistent with the sharp drop in Cy followed by a prolonged
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FIGURE 5. (@)/up versus y. Symbols are from Buice & Eaton (1997) and lines are present LES.
ox =>5.18, ¢ £ =11.96, ¢ x = 27.1, + = = 33.86.

plateau spanning from z = 15 to 45 shown in figure 4. On the scales adopted in the
figures, mean velocity profiles near the top flat wall exhibits nearly discontinuous abrupt
change of curvature at y ~ 1.8 for those streamwise stations located within the range
from z = 11.96 to 38.4. In addition, along the wall-normal direction from the abrupt
change to approximately y = 0, (@) /u; displays linear slopes at these streamwise stations.
In this paper we will refer this region as the flow outside the internal layer, the outer
flow, or the core region. The linearity of mean velocity in the core region is significant
because it implies that the velocity difference is only a function (not necessarily linear) of
distance to the wall for the outer flow, thereby satisfying a crucial condition in Millikan’s
reasoning for the existence of logarithmic velocity profile in the overlap region for the
flow underneath the core flow. Based on the results of figure 4, figure 5 and figure 6, we
can predict that in the Cy plateau region underneath the core flow the mean velocity
profiles are logarithmic.

The above prediction is put to test in figure 7 by plotting the mean velocity (u)™
against wall distance (2 — y)T using wall units. Using the friction velocity suggested in
figure 4 it can be shown that y = 1.8 corresponds to approximately 45 wall units at each
of the selected five z locations. From (2 — y)* = 20 to 80 the (uw)™ profiles at these five
streamwise stations collapse onto a logarithmic curve with the well-known slope of 1/0.4.
Very close to the wall (2—y)T < 10 the usual Law of the Wall is satisfied. We consider one
of the properties of the present internal layer is that the mean velocity obeys self-similar
Log Law and Law of the Wall inside the internal layer, and varies linearly with distance
from the wall outside the internal layer. It may be possible to further collapse the (@) /uy
profiles at different streamwise locations outside the internal layer in the core region
of the flow. For scaling of mean velocity in adverse pressure gradient boundary layers,
see the work of Na & Moin (1998) and references therein. Scaling in simple equilibrium
internal flows was discussed in a recent paper of Nakabayashi et al. (2004).
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Mean streamwise velocity and its wall-normal gradient near the top wall at x = 20
are presented in figure 8. In the region of 1 < y < 2 and 18 < z < 38 the present
mean velocity profiles exhibit similar characteristics to those in the C-type of Couette-
Poiseuille turbulent flows measured by Nakabayashi et al., compare figure 8 with the
sketch shown in figure 9. The inflectional point where second-order wall-normal mean
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FIGURE 9. Sketch of the C-type of Couette-Poiseuille turbulent flows, following the
experimental data of Nakabayashi et al. (2004).

velocity gradient changes sign is less apparent from the distribution of (u)/up in the
present diffuser flow compared to that indicated by figure 9 for the C-type of flow.
However the profile of d{(u)/0y shown in figure 8 clearly demonstrates that the inflection
is located at approximately y = 1.7. The effect on mean velocity of the lower moving wall
in the C-type of flow is accomplished in the present diffuser flow by the high speed fluid
beyond the core region, i.e., y < 1. Thus if the C-type of Couette-Poiseuille turbulent
flows can be considered approximately as a distant prototype in the region of 1 <y < 2
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and 18 < z < 38, the linearly varying high speed fluid flow away from the top wall is
then one of the driving components in the internal layer formation process because it
provides the necessary mechanism for mean velocity inflection in this particular flow.
In the flow over a bump of Webster et al. (1996), prior to the sudden change of Cpy
near the trailing edge the level of u,, . is elevated and its peak displaced away from the
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FIGURE 12. Periodogram estimator of frequency spectrum Ei;/u; as a function of f/u, at
z = 30, y = 1.8 and z = 1. The left and right dashed lines represent the —5/3 and —7 slopes,
respectively.

wall to the central region of the boundary layer. As the streamwise pressure gradient
changes from adverse to favorable an inner peak of u,.,,, appears while the outer peak
due to upstream adverse pressure gradient diminishes rapidly under the effect of newly

imposed favorable pressure gradient so that the wall-normal profiles of w,.,,, show knee
points, i.e., sharp turning, at the edge of internal layer. Sudden application of strong
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adverse pressure gradient at the throat of the Obi diffuser significantly elevates w,.,,,
near the upper flat wall, the local peak value at the throat is nearly 100% larger than
the inlet peak. But this elevated peak decays rapidly back to the original inlet peak level
by z = 10 as a result of the leveling off of C},, shown in figure 3. This process of rise and
decay corresponds to the precipitous drop and subsequent stabilization in Cy discussed
in figure 4. Under the effect of adverse pressure gradient, the elevated U;ms in the region
away form the wall bifurcates away from the inner peak and forms an outer peak. This
outer peak is the one commonly observed when boundary layer responds to adverse
pressure gradient. It shifts away from the wall with increasing streamwise distance from
z = 6.4 to 14.4. This process can be discerned from figure 10. Because the flow is still
under the influence of weak adverse pressure gradient downstream of = 10 the outer
peak does not decay as quickly as in Baskaran et al. and Webster et al.. Thus, in the Obi
diffuser, internal layer signatures may also include a valley bottom at y =~ 1.8 separating
the inner and outer peaks. The streamwise range within which such a signature is distinct
is from z = 15 to 40, consistent with figure 7. Comparison of the computed turbulence
intensity with experimental data further downstream of the last z station in figure 10 is
less satisfactory; this is very similar to findings from Kaltenbach et al. (1999) and the
other computational studies of the Obi diffuser. Kaltenbach et al. commented that the
data of Obi et al. (1993) downstream of x = 40 are only of qualitative value for validation
because of a possible scaling problem. No inflectional points can be found in the Reynolds
shear stress and wall-normal intensity profiles.

The notion that the present internal layer together with its surrounding environment
bears certain resemblance to the fundamental C-type of Couette-Poiseuille turbulent
flows is reinforced by considering the characteristics of second-order turbulence statistics
in these two flows. The ,,,, profiles close to the top wall in figure 10 bear remarkable
resemblance to those shown in figure 14 of Nakabayashi et al. (2004). The valley be-
tween the inner and outer peaks in the present discussion is termed as plateau region
by Nakabayashi et al.. Reynolds shear stress similarity between these two types of flows
can be appreciated by comparing the (u'v') profile in figure 11 with those in figure 4 of
Nakabayashi et al (2004). Note the absence of inflection in the Reynolds shear stress pro-
files for both flows. Apparently, the total shear stress in the present diffuser flow at z = 20
close to the top wall has different behavior from that in the C-type of Couette-Poiseuille
turbulent flows. This reflects the fact that the present flow is not one-dimensional and
fully developed as assumed in the C-type of Couette-Poiseuille turbulent flows. The wall-
normal gradient of total shear stress shown in figure 11 also serves as a measure for
identification of internal layer. In adverse pressure gradient boundary layer flows it is
approximately equal to the streamwise gradient of total pressure. Outside the internal
layer the total pressure on a streamline continues to change slowly as in the upstream
flow, whereas inside the internal layer under adverse pressure gradient the total pressure
increase along a streamline, being equal at the wall to the static pressure. In the present
flow the location at which the total shear stress gradient changes sign serves as one the
markers for the edge of the internal layer.

Velocity signals were recorded at selected points for a duration of 32,000 time steps.
The raw records were processed using the data windowing technique of Press et al..
(1992). The computed periodogram estimator of the power spectrum with data win-
dowing Ey;/ u% is presented in figure 12. Normalization follows convention so that the
spectrum axis has a dimension of unit length A, and the horizontal frequency axis has a
dimension of A~!. The extent within which the slope of Ei; agrees with the —5/3 inertial
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subrange law is impressive. In addition, a modest extent of —7 slope is also evident. Grid
spacing limits the highest frequency that can be locally resolved in the simulation, and
this represents an implicit filter that is imposed by the grid on the flow field (Mittal &
Moin 1997). Based on the streamwise grid spacing and the local value of mean stream-
wise velocity (@), the normalized Nyquist critical frequency f./up is approximately 1.2.
Spectrum results at higher frequencies may therefore be ignored on the figure.

The internal layer itself is visualized in figure 13 using contours of rms axial turbulence
intensity. An imaginary nearly horizontal line connecting the local tips of the contours
close to the top wall can be considered approximately as the outer edge of the internal
layer.

4. Conclusions

In the concluding remarks of Azad & Kassab (1989), it was commented that “it may
also be conjectured that there is a new growth of a layer in the diffuser wall underneath
the retarded, fully developed flow coming from the pipe into the diffuser”. Our results near
the upper wall region of the asymmetric planar Obi diffuser supports their conjecture,
albeit at a much lower Reynolds number and also with qualifications.

The new layer is identified as an internal layer but with slow growth. Mean streamwise
velocity possesses a well-defined logarithmic slope inside the internal layer until 80 wall
units, and varies linearly with wall-normal distance outside the internal layer. One of the
statistical indicators of an internal layer is inflectional characteristic in the wall-normal
profile of streamwise turbulence intensity. This may take the concrete form of knee-point
as reported in the external flow over a hill (Baskaran et al. 1987), or valley as found in the
present internal flow through a planar diffuser. Internal layers have a tendency to emerge
in the relaxation zone downstream of a sudden change in streamwise pressure gradient.
Examples of such abrupt change in pressure gradient include the adverse to favorable
drop at the trailing edge of the bump of Webster et al. (1996), as well as the favorable to
adverse jump at the throat regions of the Azad diffuser (Okwuobi & Azad 1973) and the
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Obi diffuser. Obviously one prerequisite for internal layer formation is that the abrupt
change in pressure gradient may not lead to flow separation, though instantaneous flow
reversal is not precluded. We argue that it is possible to relate the occurrence of internal
layer to the skin-friction coefficient Cy, which is directly related to the near-wall mean
velocity gradient. For instance, a step increase in C is found after the trailing edge of the
Webster bump corresponding to the adverse to favorable streamwise pressure gradient
transition, followed by a gradual leveling off. Over the upper wall of the Obi diffuser,
a rapid drop in Cy corresponding to the favorable to adverse pressure gradient jump is
followed by a leveling off downstream of = 15. The establishment and stabilization of a
new level of Uy signals the birth of internal layer and may be considered as an indicator.

Approximately speaking, the present internal layer and the outer flow associated with
it together constitute a distant analogue to the fundamental C-type of Couette-Poiseuille
turbulent flows studied recently by Nakabayashi et al. (2004). They share broadly similar
characteristics of mean and second-order turbulence statistics, but the total shear stress
profiles are distinctly different. The role of the lower moving wall in the C-type flow is
substituted by the high speed fluid in the central region of the diffuser where the mean
velocity (u) varies linearly with wall-normal coordinate. In this sense the linearly varying
high speed flow in the outer region provides the necessary mean flow inflection mechanism
for the fluid close to the wall, and may be regarded as one of the driving components in
the present internal layer process. The location at which the total shear stress gradient
changes sign serves as one the markers for the edge of the internal layer.

Clarifications should be added with reference to the discussion of Townsend (1976)
that sudden changes in external conditions in boundary layers may result in an internal
boundary layer that spreads from the section of change, and the layer outside the internal
layer develops in almost the same way as in the original flow. The results from this study
suggest that internal layers may emerge in the relaxation zone downstream of a sudden
change in streamwise pressure gradient. Furthermore, the layer outside the internal layer
does not behave as if it were unperturbed, i.e., in the same way as in the original flow. On
the contrary the flow outside the internal layer displays distinct relaxation characteristics
consistent with the removal of strong pressure gradient. Admittedly such observations
are limited to the internal layers arising from sudden changes in streamwise pressure
gradient. Other perturbation mechanisms, e.g., change in surface roughness, probably
will result in an internal layer process not entirely the same as described in this paper.
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LES prediction of pressure fluctuations on a low
speed airfoil

By M. Wang, S. Moreauj, G. Iaccarino, AND M. Rogeri

1. Motivation and objectives

The noise generated by flow over a lifting surface is a major concern in many engi-
neering applications. Examples include propeller noise, rotor noise, wind turbine noise,
fan noise, and noise from wings and hydrofoils. Even in the absence of disturbances in
the incoming stream, an airfoil (blade) can be noisy due to the unsteady and turbulent
boundary layers and wake generated around the profile and their interaction with it,
particularly in the trailing-edge region. This so called self-noise, or trailing-edge noise, is
a major contributor to the overall noise in rotating machines and generally defines the
lower bound of noise (Wright 1976).

Trailing-edge noise is much more powerful than the noise radiated by turbulent flows of
comparable intensity in free space. This is because when turbulent boundary layer eddies
are convected past the trailing edge, their aeroacoustic source characteristics are modified
by the edge, resulting in a more efficient conversion of flow energy to acoustic energy. The
theoretical framework for predicting trailing-edge noise has long been established (see,
for example, Ffowcs Williams & Hall 1970; Crighton & Leppington 1971; Howe 1978).
In recent years, aided by the rapid increase in computing power, a number of numerical
studies have been performed using Lighthill’s theory (Lighthill 1952) in conjunction with
large-eddy simulation (LES) of the near field (Wang & Moin 2000; Manoha, Troff &
Sagaut 2000; Oberai, Roknaldin & Hughes 2002). Wang & Moin (2000) computed the
flow over a model airfoil used by Blake (1975) in a trailing-edge aeroacoustic experiment
at chord Reynolds number of 2.1 x 10, and obtained reasonable agreement with experi-
mental measurements in terms of velocity and unsteady surface pressure statistics as well
as radiated noise spectra. To save computational cost, the simulation was limited to the
rear 40% of the airfoil and a spanwise width of just 50% of the airfoil thickness (1.2%
chord). In addition, there is uncertainty about the velocity boundary conditions because
of wind tunnel installation effects, which can cause the flow to deviate from that in free
space (Moreau et al. 2003).

The objective of the present work is to further assess the predictive capability of LES
for airfoil self noise. A new experiment was performed at Ecole Centrale de Lyon (ECL)
to provide data for comparison with numerical solutions. In the experiment, described in
Roger & Moreau (2004a) and Moreau et al. (2003), an industrial cambered airfoil (fan
blade) is placed at the exit of an open-jet anechoic wind tunnel, as shown in figure 1. The
airfoil, designed to achieve low drag by controlling the chordwise diffusion, is known as
the controlled diffusion (CD) profile. Far-field acoustic spectra are measured along with
the spatial-temporal statistics of surface pressure fluctuations, including the frequency
spectra, coherence and phase. The unsteady surface pressure is of interest because it is
used to predict the far-field noise in certain aeroacoustic models based on the classical

t Valeo Motors and Actuators, France
1 Ecole Centrale de Lyon, France
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FIGURE 1. Experimental setup in the ECL open-jet facility.

diffraction theory (Amiet 1976; Brooks & Hodgson 1981; Roger & Moreau 2004b). It can
also induce blade vibration which is an additional source of noise. From a fundamental
point of view, both the unsteady surface pressure and radiated acoustic pressure are
generated by the same velocity source filed, and hence an accurate prediction of the
surface pressure, particularly near the trailing edge, is indicative of the quality of the flow
solution for far-field computation. In this article, we present a validation and analysis of
the spatial-temporal statistics of the fluctuating surface pressure field. The far-field noise
radiation will be computed and presented in the future.

The numerical simulation follows closely the experimental flow conditions. The Reynolds
number based on chord and maximum nozzle exit velocity is 1.5 x 10°. At this relatively
low Reynolds number, it is feasible to perform LES with the entire airfoil, although the
details of laminar-to-turbulence transition in the nose region may not be captured accu-
rately. It is argued, and later confirmed, that as long as the location of the transition is
captured approximately, the subsequent development of the boundary layer and hence
the trailing-edge noise and surface pressure fluctuations are relatively insensitive to the
transition process. Several angles of attack («), measured with respect to the nozzle
axis, are considered in the experiment, among which we choose a = 8° in the numerical
simulation.

2. Accomplishments
2.1. Computational approach

It has been shown by Moreau et al. (2003) that the flow around an airfoil in an open-
jet wind tunnel facility differs significantly from that around an isolated airfoil in a
uniform stream. In the former case, the airfoil is immersed in a jet of finite width, which
is deflected by the circulation created by the airfoil. This can have a large impact on
the airfoil loading and its aeroacoustic properties. To account for the effect of jet-airfoil
interaction, one possible approach is to include both the jet and airfoil in the simulation.
This would, however, make the LES computationally very expensive if not impossible,
and add considerable complexity to the problem.

To facilitate the LES while matching closely the experimental conditions, we use an
approach which incorporates Reynolds-averaged Navier-Stokes (RANS) solutions into the
computation as illustrated in figure 2. First, a RANS simulation is performed in a large
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(light), indicate the streamwise velocity.

computational domain which includes the airfoil, the nozzle and the jet. The velocities
obtained from the RANS calculation are used to provide boundary conditions for the
LES, performed in a smaller domain embedded in the potential core of the jet. A similar
method was employed previously by Wang and Moin (2000). As shown in figure 3, the
pressure coeflicient from LES is in reasonable agreement with those from RANS and
experiment, indicating that this approach provides high fidelity in terms of global flow
conditions. In order to allow for a reasonably large LES domain within the jet core, the
largest nozzle available in the ECL facility was employed. The jet width at the nozzle
exit is 50 cm, or 3.69 times the airfoil chord C.

In the LES, we solve the spatially filtered, incompressible Navier-Stokes equations in
conjunction with the dynamic subgrid scale model (Germano et al. 1991; Lilly 1992) using
an energy-conserving, hybrid finite-difference/spectral code described in Wang & Moin
(2000). The numerical scheme utilizes second-order central differences in the streamwise
and cross-stream directions, and Fourier collocation in the spanwise direction. The time
advancement is of the fractional step type in combination with the Crank-Nicholson
method for viscous terms and third order Runge-Kutta scheme for the convective terms.
The Poisson equation for pressure is solved using a multigrid iterative procedure. Sim-
ulations are performed on a C-mesh with 960 x 84 x 64 cells, covering a region of size
4C (streamwise, ) x 2.5C (cross-stream, y) x 0.1C (spanwise, z). Except in the vicin-
ity of the leading edge, the near-wall grid resolution on the suction side is Az < 34,
Ayt < 1.1, and AzT < 20 in wall units, which is adequate for LES. Resolution on the
pressure side is considerably coarser because the boundary layer is laminar. The bound-
ary conditions consist of the no-slip condition on the airfoil surface, convective outflow
condition in the exit plane, steady RANS velocities along the outer “C” boundary, and
periodic boundary conditions in the spanwise direction.

2.2. Results
2.2.1. Flow-field characteristics

Figure 4 depicts the iso-contours of the streamwise velocity in a given spanwise plane
at a given time instant. It shows a laminar boundary layer on the lower (pressure) side
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FIGURE 5. Distribution of skin friction coefficient (computed relative to maximum inlet
velocity) along the airfoil. , suction side; ——-— | pressure side.

of the airfoil, and a transitional and turbulent boundary layer on the upper (suction)
side. Transition on the suction side is triggered by an unsteady laminar separation near
the nose, as illustrated clearly in the leading-edge close-up in figure 4. The leading-edge
separation is quantitatively identified in figure 5 as a region of negative skin friction
coefficient Cy. The streamwise extent of the mean separation bubble is approximately
3.7%C. After reattachment the suction side boundary layer evolves downstream into
a fully turbulent one. Like its laminar counterpart on the pressure side, the turbulent
boundary layer remains attached as it passes the trailing edge despite the strong adverse
pressure gradient. There is no obvious coherent vortex shedding at the present angle
of attack. These qualitative features of the flow are in agreement with experimental
observations.
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FIGURE 6. Frequency spectra of pressure fluctuations on the suction side of airfoil surface at
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2.2.2. Frequency spectra of surface pressure fluctuations

The frequency spectra, of pressure fluctuations on the suction side of the airfoil surface
are shown in figures 6 and 7. To facilitate comparisons with the experimental data,
dimensional frequencies (in Hz) and spectra (in dB, relative to the reference pressure
of 2 x 107° Pa) are used. The reference velocity (Up) and density (po), taken at the
center of nozzle exit, are 16 m/s and 1.25 kg/m3, respectively, and the airfoil chord
is C' = 0.1356 m. Since the airfoil has an angle of attack, it is convenient to define
a chordwise coordinate ., which is related to the z-coordinate (cf. figure 4) by z, =
z/ cos a, to identify the measurement stations. Along this coordinate the nose is located
at z./C = —1 and the trailing-edge is at z./C = 0.

Plotted in figure 6 are comparisons with experimental measurements at four stations:
z./C = —0.60, —0.14, —0.08, —0.02. The first station (figure 6a) is in the front half of
the airfoil. At this location the pressure spectrum already exhibits turbulent boundary
layer characteristics and is in good agreement with experimental measurements. Similar
spectral shapes are observed at downstream locations. The last three stations shown in
figure 6(b—d) are located in the trailing-edge region. Their pressure spectra show overall
agreement with the experimental data. In general, LES is seen to overpredict the spectral
level by 2 to 4 dBs relative to the experiment in the low to intermediate frequency
range. At the high frequency end the LES spectra drop off more rapidly, suggesting
that the boundary layer lacks very small scale structures. This is not atypical of LES
predictions (e.g. Wang & Moin 2000; 2002), although somewhat surprising given the good
grid resolution employed in the computation and the fact that high frequency contents
are much better captured at the upstream location shown in figure 6a.

A useful observation from figure 6(b—d) is that the pressure spectra exhibit only small
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FIGURE 7. Frequency spectra of pressure fluctuations on the suction surface in the leading-edge

area. (a) LES results at five chordwise locations: , Le/C = —0.99; ——-- | z./C = —0.97;
-------- , ¢./C = —0.95; —-— | z./C = —0.91; —--— | z./C = —0.85. (b) Comparison with
experimental measurements at z./C = —0.95: —— , LES; —--- , measurement 1; -------- ,

measurement 2.

variations in the trailing-edge region (within the last 15% chord). This is important for
the aeroacoustic prediction models based on pressure diffraction theory (e.g. Amiet 1976;
Brooks & Hodgson 1981, Roger & Moreau 2004b), which utilize the frequency spectrum
of wall pressure at a single point near the trailing edge as an input. The exact location is
arbitrary as long as the spectrum is not affected by the edge diffraction. This approach
necessarily requires the boundary layer to be self-similar so that the wall pressure spec-
trum does not exhibit strong sensitivity to the streamwise position. The spectra obtained
for the present flow exhibit this property despite the adverse pressure gradient, indicating
that this modeling approach is suitable for the far-field noise prediction.

In contrast to the trailing-edge area, the pressure spectrum in the leading-edge re-
gion shows extremely strong dependence on position. Figure 7a depicts the frequency
spectra at locations z./C = —0.99, —0.97, —0.95, —0.91, and —0.85. The first station is
upstream of the unsteady separation, and hence the spectrum lacks high frequency con-
tents. The second station is inside the separation, and the other three are downstream
of reattachment. The spectral levels are highly elevated inside the separation and im-
mediately following the reattachment as a result of the shear layer motions and laminar
breakdown. It should be pointed out that the detailed transition process, including the
precise locations of separation and reattachment, is strongly dependent on incoming flow
disturbances. No free-stream turbulence is provided in the computation, whereas in the
experiment, the residual turbulence level in the incident flow is approximately 0.8% of
the mean velocity. The experimental pressure spectra in the leading-edge region show
significant variations from one measurement to another. As an example, two sets of mea-
surements at the same location, z./C = —0.95, are plotted in figure 7b along with the
LES solution. The discrepancies among the three curves are very large. An accurate simu-
lation of the leading-edge region would require a precise characterization of the incoming
turbulence as well as very accurate numerics. However, given the non-repeatability even
among experimental measurements, such a task may prove very challenging.

The root-mean-square (rms) value of pressure fluctuations p,,s, normalized by the
local mean wall shear stress 7., is plotted in figure 8 along the suction surface. The curve
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FIGURE 8. Variation of prms/7w along the airfoil suction surface, computed using LES.

is truncated in the nose and trailing-edge regions because of the exceedingly small 7,
values caused by flow separation and adverse pressure gradient. In the region —0.8 <
z/C < —0.4, the pressure gradient is nearly zero (cf. figure 3), and py.,s/7 varies
from 1.5 to 2.7. This is consistent with previous numerical and experimental values for
equilibrium turbulent boundary layers at similar low Reynolds numbers (e.g. Choi &
Moin 1990).

2.2.3. Correlation and coherence

The evolution of the spatial and temporal scales in the turbulent boundary layer is
reflected in the space-time correlation of the fluctuating surface pressure, depicted in
figure 9 as a function of temporal and spanwise spatial separations at four streamwise
locations z./C = —0.60, —0.23, —0.02, and 0. A significant growth of the spanwise and
temporal scales is observed from the first station to the third, as a result of the thickening
of the boundary layer which is accelerated by the adverse pressure gradient. A similar
growth in streamwise scales can be inferred from the temporal scales through Taylor’s
hypothesis. The last station, z./C = 0, is in the back of the trailing edge, which is
blunt on a small scale (see figure 4). The decorrelation spatial and temporal scales at
this location (figure 9d) are found to be much larger than those of its close neighbor,
z./C = —0.02 (figure 9¢). Note that the spanwise correlation coefficient in figure 9 decays
to between 0.1 and 0.2 over a maximum separation equal to one half of the periodic
spanwise domain size. This is, while not ideal, considered reasonable for this flow and
much better than in some related studies (e.g. Wang & Moin 2000). To test the sensitivity
of the correlation to spanwise domain size, a separate simulation with twice the spanwise
domain size but coarser grid resolution has been conducted. The results show only a
marginal improvement, and the minimum spanwise correlation remains larger than 0.1.

An important parameter in trailing-edge noise prediction (both modeling and compu-
tation) is the coherence length scale of the source field in the spanwise direction, since it
represents the size of a source region which radiate independently from sources in neigh-
boring regions in a statistical sense. The coherence is essentially the two-point correlation
coefficient in the frequency domain, defined as
|®pp(x, 1, )|
op (%, 0,w)|[®pp(x + 1,0,w)|

7V (x,r,w) = B (2.1)

where the cross spectrum function ®,, is the Fourier transform of the space-time cross
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FIGURE 9. Contours of space-time correlation of the fluctuating pressure on the suction surface
as a function of spanwise and temporal separations, at streamwise locations (a) z./C = —0.60,
() z./C = —0.23, (¢) z./C = —0.02, and (d) z./C = 0 (trailing edge). Contour values are from
0.1 to 0.9, with increment 0.1.
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D (x,1,w) = / (p(x, t)p(x + 1.t +7))e " “Tdr. (2.2)
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Figure 10 shows the surface pressure coherence as a function of spanwise separation
and frequency, at locations z./C = —0.60 and —0.02. These two contour plots should be
contrasted with the corresponding correlation plots in figure 9a and figure 9c, respectively.
It is observed that the increased spanwise correlation near the trailing edge is a low
frequency effect. The higher frequency components near the trailing edge are in fact less
correlated (having smaller coherence length) than their upstream counterparts.

In figure 11a, a comparison is made between the experimental and computed values
of the spanwise coherence of fluctuating surface pressure at the near trailing-edge point
z./C = —0.02. Two spanwise separations, Az/C = 0.02 and 0.04, are considered. The
LES results are shown to predict the higher frequency behavior of the coherence but not
the low frequency value. It appears that the coherence at low frequencies, particularly
for relatively large separations as measured in the experiment, is extremely sensitive to
sample size and numerical errors. In figure 11b the coherence at the same location is
plotted as a function of spanwise separation for five discrete frequencies. The rapid decay
of the coherence with spanwise separation, even at low frequencies (see also figure 10),
indicates that the current spanwise computational domain size allows the capturing of a
statistically independent acoustic source region and the computation of coherence length
scales; both are key to the computation of radiated noise. However, the accuracy of the
lower frequency coherence needs to be improved.
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FIGURE 11. Spanwise coherence of fluctuating pressure on the suction surface at z./C = —0.02.

(a) Coherence plotted against frequency in Hz: , LES; -------- , experiment. Upper curves
are for spanwise separation Az/C = 0.02, and lower curves are for Az/C = 0.04. (b) Coherence
plotted against spanwise separation: , wC/Up =15 (281 Hz); -—-- , wC /Uy = 30 (563
Hz); -~ , wC/Ug = 60 (1126 Hz); —-— , wC/Up = 120 (2252 Hz); —-— , wC/Ups = 240
(4503 Hz).

3. Summary and future plans

In this work large-eddy simulation has been employed to study the space-time charac-
teristics of the fluctuating pressure on a thin, cambered airfoil at 8° angle of attack. The
computational results are compared with concurrent experimental measurements carried
out at ECL in terms of the frequency spectra and spanwise coherence. The relatively
low Reynolds number of 1.5 x 10° based on chord allows the simulation to be performed
with the entire airfoil in the computational domain. Transition is triggered naturally by
unsteady laminar separation near the nose.

To replicate faithfully the experimental flow conditions in the simulation, a RANS
calculation is first performed in an open-jet wind tunnel configuration. The resulting
velocity profiles are then used to define the boundary conditions for LES in a smaller,
C-mesh domain within the core of the jet. This approach is shown to provide the correct
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global flow condition in terms of airfoil loading. The precise turbulent inflow condition,
which can affect the leading-edge transition, is not prescribed. It is found that the pressure
spectrum beneath the fully developed turbulent boundary layer is insensitive to the
details of the upstream transition process, as long as the location of the transition is
captured approximately.

The LES flow field is characterized by an attached laminar boundary layer on the
pressure side of the airfoil and a transitional and turbulent boundary layer on the suction
side, in agreement with experimental observations. A spectral analysis of the fluctuating
surface pressure field shows reasonable agreement with experimental values in the mid-
and aft-sections of the airfoil. In the nose region, characterized by unsteady separation
and transition, the flow and wall-pressure fluctuations are highly sensitive to small inflow
perturbations. Their spatial-temporal statistics are difficult to measure experimentally or
predict computationally with certainty. LES is also shown to be capable of predicting the
spanwise coherence of the surface pressure field to reasonable satisfaction compared with
the experiment except at the low frequency end, where statistical convergence is difficult
to reach. In addition to the validation study using experimental data, a preliminary
analysis of the spatial and temporal structures of the unsteady pressure field and their
evolution has been carried out.

In the future we plan to further validate and analyze the LES solutions using recently
acquired hot-wire measurements in the wake. We will also compute the noise radiation
to the far-field using Lighthill’s aeroacoustic theory.

REFERENCES

AwMiIeT, R. K. 1976 Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47,
387-393.

BLAkE, W. K. 1975 A Statistical Description of Pressure and Velocity Fields at the
Trailing Edge of a Flat Strut. DTNSRDC Report 4241, David Taylor Naval Ship R
& D Center, Bethesda, Maryland.

Brooks, T. F. & Hobason, T. H. 1981 Trailing edge noise prediction from measured
surface pressures. J. Sound Vib. 78, 69-117.

CHol, H. & Moin, P. 1990 On the space-time characteristics of wall-pressure fluctua-
tions. Phys. Fluids A 2, 1450-1460.

CRIGHTON, D. G. & LEPPINGTON, F. G. 1971 On the scattering of aerodynamic noise.
J. Fluid Mech. 46, 577-597.

Frowcs WiLLtiams, J. E. & Harr, L. H. 1970 Aerodynamic sound generation by
turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40, 657-670.

GERMANO, M., PioMELLI, U., MoOIN, P. & CaBoT, W. H. 1991 A dynamic subgrid-
scale eddy viscosity model. Phys. Fluids A 3, 1760-1765.

Howeg, M. S. 1978 A review of the theory of trailing edge noise. J. Sound Vib. 61,
437-465.

LiGgHTHILL, M. J. 1952 On sound generated aerodynamically; I. General theory. Proc.
Roy. Soc. London Ser. A 211, 564-587.

Liny, D. K. 1992 A proposed modification of the Germano subgrid scale closure method.
Phys. Fluids A 4, 633-635.

MANOHA, E., TROFF, B. & SacAvuT, P. 2000 Trailing edge noise prediction using large
eddy simulation and acoustic analogy. ATAA J. 38, 575-583.



Pressure fluctuations on a low speed airfoil 193

MOoREAU, S., HENNER, M., IACCARINO, G., WANG, M. & ROGER, M. 2003 Analysis
of flow conditions in free-jet experiments for studying airfoil self-noise. ATAA J. 41,
1895-1905.

OBERAI A. A., ROKNALDIN F. & HuGHES T. J. R. 2002 Computation of trailing-edge
noise due to turbulent flow over an airfoil. ATAA J. 40, 2206-2216.

ROGER, M. & MOREAU, S. 2004a Broadband self-noise from loaded fan blades. ATAA
J. 42, 536-544.

ROGER, M. & MOREAU, S. 2004b Back-scattering correction and further extensions of
Amiet’s trailing-edge noise model. Part I: Theory. J. Sound Vib., in press.

Wanag, M. & Moin, P. 2000 Computation of trailing-edge flow and noise using large-
eddy simulation. AIAA J. 38, 2201-2209.

WanNG, M. & MoiN, P. 2002 Dynamic wall modeling for large-eddy simulation of com-
plex turbulent flows. Phys. Fluids 14, 2043-2051.

WRIGHT, S. E. 1976 The acoustic spectrum of axial flow machines. J. Sound Vib. 45,
165-223.



Center for Turbulence Research 195
Annual Research Briefs 200/

A space-time correlation theory for
turbulent shear flows

By G.W. Hef AND M. Wang

1. Motivations and objectives

The objective of this research is to investigate the large-eddy simulation (LES) pre-
diction of velocity space-time correlations in turbulent shear flows. In the application of
LES methodology to aeroacoustics (e. g. Wang & Moin 2000; Colonius & Lele 2005),
Lighthill’s acoustic analogy (Lighthill 1952) is often used to compute the far-field noise.
According to Lighthill’s theory, the acoustic intensity radiated by a turbulent flow de-
pends on the space-time correlations of the Lighthill stresses, which are related to the
space-time correlations of velocity fluctuations based on Proudman’s (1952) analysis.
Our previous research (He, Rubinstein & Wang 2002; He, Wang & Lele 2004) shows that
the space-time correlations in isotropic turbulence are determined by the instantaneous
wavenumber energy spectrum and the sweeping velocity; the latter is the root mean
square of total energy. Therefore, if LES with an appropriate SGS model captures the
time evolution of the energy spectrum, the space-time correlation, and hence noise, is
expected to be computed correctly. However, realistic flows are not isotropic and homo-
geneous. In turbulent shear flows, the space-time correlations are no longer dominated
by the sweeping velocity. Thus, an accurate prediction of the energy spectrum is not
the only requirement for SGS modeling. The convection and shear may cause additional
effects on space-time correlations, which must be accounted for by the SGS models.

In this study, we investigate the space-time correlations in turbulent shear flows. An
elliptic hypothesis is proposed to model the space-time correlations in the streamwise di-
rection. It is shown that Taylor’s hypothesis is a linear approximation to the correlation
contours, whereas the elliptic hypothesis is a second order approximation to the contours.
An analytical expression for space-time correlations is formulated from the elliptic hy-
pothesis, which relates the space-time correlations to two-point spatial correlations and
propagation velocities. The propagation velocities are neither the sweeping velocity nor
the mean velocity in general. The results will be used to guide a subsequent computation
aimed at elucidating the SGS modeling effect on space-time correlations in turbulent
shear flows.

2. Main results

The space-time correlation in a statistically stationary and homogeneous flow is defined
as

R(r,7) = {ui(x, )ui(x + r,t + 7)), (2.1)
t Permanent address: Laboratory for Nonlinear Mechanics, Institute of Mechanics, Chi-
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where u; is a component of velocity fluctuation u and 7 is the temporal separation. No
summation over repeated indices is implied unless otherwise indicated. For notational
simplicity, the index on the correlation function R has been dropped. In the present
analysis, we limit spatial separation to the streamwise direction: r = (r,0,0), in which
turbulence is statistically homogeneous. In previous studies of the space-time correlations,
velocity fluctuations are frequently considered to be convected by a propagation velocity
V such that

R(r,7) = R(r — V1,0). (2.2)

If the fluctuations are convected in frozen patterns, the propagation velocity is the mean
velocity. This is the result from Taylor’s well-known hypothesis. Eq. (2.2) also implies
that

R(r,7) = / E(k) cos[k(r — Vr)]dk, (2.3)

which indicates that the space-time correlation is determined by the wavenumber en-
ergy spectrum E(k) and propagation velocity. Therefore, if LES can predict both the
wavenumber energy spectrum and propagation velocity, it can predict the space-time
correlations. However, Taylor’s hypothesis is a rather crude approximation and may fail
in flows with a strong shear (Lumley 1965). It is desirable to derive a more general and
accurate model for the space-time correlations in turbulent shear flows.

Consider an iso-correlation contour R(r,7) = C, where C is constant. If we can find
a point (r.,0) on the contour, it implies that R(r,7) = R(r.,0). Therefore, the space-
time correlations are determined by the spatial correlation R(r,0) and the solution of
the equation R(r,7) = R(r.,0). Both numerical simulations (Kim & Hussain 1993) and
experiments (Wills 1964) have shown that in turbulent shear flows the correlation con-
tours form closed curves with a single peak at the origin (r,7) = (0,0). The contours
decrease in value with increasing r or 7, and decay to zero as r or 7 goes to infinite.
This ensures the existence of a solution to the equation R(r,7) = R(r,0). The most
prominent feature of the contours is that they have a preferred direction.

The correlation contours can be reasonably approximated by second order algebraic
curves. A higher-order approximation can be introduced if necessary. Based on the ex-
perimental and numerical observations, we propose an elliptic approximation, i.e. the
contours of space-time correlations are ellipses. The ellipses can be obtained by Taylor’s
expansion of the space-time contours R(r,7) = C

R.t® +2R,or7 + Ron7? = C, (2.4)

where the subscripts denote derivatives evaluated at r = 0 and 7 = 0. Note that
R,(0,0) = R.(0,0) = 0 because the flow is statistically stationary and homogeneous
in the direction of separation. R(0,0) has been absorbed into C. Suppose that (r,7) and
(r¢,0) are the two points on the ellipse, that is R(r,7) = R(r.,0), we obtain

Te = \/r(r - 2ViT) + V272, (2.5)

where
Vi= _RTT(R’I"I‘)_17 (26)
V? = RTT(RT"!')_I' (27)

Here V] is the same propagation velocity defined by Wills (1964). V; also has the dimension
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of velocity and may thus be considered as a propagation velocities. As a result, we have

R(r,7) =R (\/r(r —2ViT) + V272, 0) (2.8)

Eq. (2.8) implies that the space-time correlations in a turbulent shear flow can be deter-
mined from the spatial correlations and appropriately defined propagation velocities.
In the degenerate case of R,.R., — R2_ =0, (2.5) can be simplified to

re=r—Vr, (2.9)

which is Taylor’s hypothesis. It is now clear that Taylor’s hypothesis is a linear approxi-
mation to the correlation contours, which is the degenerate case of the elliptic hypothesis.
If there exists a dominant propagation velocity, the ellipse is very flat in the direction
normal to the propagation direction. This means that the ratio of two principal axes
of the ellipse, R,.R., — R2_, is negligibly small. Thus, Taylor’s hypothesis is a good
approximation.

The two velocities in (2.5) can be analytically calculated from the Navier-Stokes equa-
tions using the Taylor expansion technique (Gotoh & Kaneda 1991; Kaneda 1993). In
the following, we derive the first propagation velocity as an example. We start with the
incompressible Navier-stokes equations

ov 1 N
E—F(V-V)v— pr+VV v,
V.v=0, (2.10)

where v is the kinematic viscosity and p is the density, hencefore absorbed into pressure.
The velocity v and pressure p are decomposed into their mean parts, U and P, and their
fluctuation parts, u and p', such that

v=U+u,
p=P+9p. (2.11)

For simplicity, we consider parallel flows whose mean velocity has the form U =
(U1(2),0,0). The velocity and pressure fluctuations must then satisfy

6u,~ _ 8ui 6U1 (1’2) ) _6“,’ laui 6;0' 62ui
gt = U@ g mwe g = i (UG ) T ae T Basw;
., 02
pl = -V 26$i6$j [U1(5i1Uj + U15j1u,- + uju; — (uz-uj)] . (2.12)

Note that in (2.12), the summation convention over repeated indices applies. From the
definition of the space-time correlation, we can calculate

Pui(x+r,t+7) _/0ui(x,t) dui(x, 1)
6"'2 >T:T:0 - - < aa:l 6;1;‘1 > (213)

B O?u;(x +r,t+7) B Oui(x,t) Ou;(x,t)
Bor = <u,(x, ) oror >T:T:0 T < Oxq ot > (2.14)

Substituting (2.12) into (2.14) leads to

Oui(x,t) Ou;(x,1t) U1 (z2) o Ouq (x,1)
6.’E1 6.1‘1 + 8.2;'2 611 UQ(X,t) 6.2?1

R, = <ui(xa t)

R, = U1($2)<
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// Ui (y2) <3u2(yat) 6ui(xat)> Yi = Ti g (2.15)
or dy» Iy dz1 [ [x—y|
where the velocity fluctuations are assumed to be homogeneous and their triple correla-

tions and the viscous terms are ignored.
Therefore, the first propagation velocity is

U, (z2) Bui \ / Ou; du; \ ™
Vi = Ui(z2) + o5 61«”aa><8m5m>

/ / U1 (y2) <auz(y,t) 6ui(x,t)> vi = @i < Ou; Qus >1 (2.16)
Oy Oy oz, |x — y] Oz, 0z

Expression (2.16) shows that the propagation velocity V; is dominated by the mean
velocity if the shear rate is relatively small. However, when the shear rate is large, the
contribution from the second term can be significant. This observation is in agreement
with the numerical results in channel flows obtained by Kim and Hussain (1993): the
propagation velocity for most of the outer layer is essentially identical to the local mean
velocity, whereas the propagation velocity in the near-wall region is about one half of
the mean velocity at the center of the channel, which is larger than the local mean

velocity. Therefore, the space-time correlations in turbulent shear flows present additional
requirements to LES beyond the wavenumber energy spectra.

3. Future work

An elliptic approximation for space-time correlations in turbulent shear flows has been
proposed. According to this approximation, the space-time correlations of velocity fluctu-
ations are determined by the two-point spatial correlations and the propagation velocities.
It is also shown that Taylor’s hypothesis is a linear approximation to the space-time cor-
relations. To accurately predict the space-time correlations, one must accurately predict
the spatial correlations and the propagation velocities.

Future work will include the numerical verification of the elliptic hypothesis in turbu-
lent shear flows. The space-time correlations will be evaluated in a channel flow using
DNS and LES with different SGS models. The results obtained will be analyzed in terms
of propagation velocities. These fluctuating quantities to be analyzed include velocity,
pressure and the Lighthill stress tensor.
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A multilevel formulation to simulate particulate
flows

By S.V. Apte

1. Motivation and objectives

Many engineering problems involve two-phase flows, where particles of different shapes,
sizes, and densities in the form of droplets, solid particles, or bubbles are dispersed in
a continuum (gaseous or liquid) fluid. Numerical simulations of these flows commonly
employ Lagrangian description for the dispersed phase and Eulerian formulation for the
carrier phase. Depending on the volumetric loading of the dispersed phase two regimes
are identified: dilute (dp, << I) and dense (d, =~ l), where dj, is the particle diameter,
and [ the inter-particle distance. Furthermore, the grid resolution (A) used for solution
of the carrier phase could be such that the particles are subgrid (d, << A) or resolved
(A < dp) (cf. figure 1). Clearly, different numerical approaches are necessary to simulate
various regimes of the flow. In addition, these regimes may occur in the same simulation,
e.g. DNS or LES of wall-bounded turbulent flows with moderate particle loadings. Near
the wall, the grid resolution in the wall-normal direction is extremely fine (d, > A) to
capture the small scales of turbulence, and the particles move slowly thus increasing
their residence time and number density near the wall and decreasing the inter-particle
distance (I = d,), whereas away from the wall the grid resolution is coarse and the
inter-particle distance is large. A multi-level approach capable of addressing all regimes
is needed.

Typical simulations involving millions of dispersed particles employ “point-particle”
approach for dilute particle-loadings (Apte et al. 2003a; Apte et al. 2003b; Segura et al.
2004) where the forces on the dispersed phase are computed through model coefficients
and the effect of particles on the carrier phase is represented by a force applied at the
centroid of the particle. Although this approach has been shown to give good results
for swirling, separated flows (Apte et al. 2003a), it fails to properly capture turbulence
modulation in wall-bounded flows (Segura et al. 2004). If the volumetric loading is high or
the particle size is greater than Kolmogorov scale, simple drag/lift laws for particle motion
(used in the point-particle approach) do not capture the unsteady wake effects (Burton
& Eaton 2003). Apte et al. (2003c) (henceforth CTR-ARBO03) performed simulations
of Poisuille flow with large spherical particles arranged in layers at the bottom of the
channel. It was shown that the point-particle approach was unable to provide any lift
to the particles in this shearing flow. Accounting for volumetric effects of the spherical
particles was important to obtain lift and fluidization of the channel as observed in
fully resolved DNS studies (Choi & Joseph 2001; Patankar et al. 2001). The formulation
developed in Apte et al. (2003c) is applicable to dense as well as dilute regimes (here the
effect of volume fraction will be negligible). However, it requires that the size of particles
is less than the grid control volume.

If d, >> A, the particle-domain is completely resolved by the grid, and forces on the
particle should be computed directly. A variety of approaches based on distributed La-
grange multipliers (DLM)/fictitious domain method (Glowinski et al. 1999; Patankar et
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FIGURE 1. Regimes of particulate flows in Eulerian-Lagrangian simulations: a) dilute, b)
dense, c) resolved
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FIGURE 2. Use of material points to describe the particle domain: a) original sphere, b) sphere
replaced by material points. Each material point has an associated volume (and thus a length
scale) so that the total volume of all material points is equal to the original particle.

al. 2000), arbitrary Lagrangian-Eulerian (ALE) formulation (Hu et al. 2001), immersed
boundary based direct forcing method (Kajishima & Takagi 2002), fast computation
techniques based on DLM (Patankar 2001; Sharma & Patankar 2004) have been devel-
oped and applied to simulate these types of “resolved” particulate flows. For turbulent
flow simulation of large number of particles, two approaches stand-out because of their
easy implementation and fast computation: a) Kajishima & Takagi (2002) (henceforth
KT02) and b) Patankar (2001). The formulation due to KT02 is explicit in terms of par-
ticle momentum coupling and is first-order accurate in time, however, has been shown
to give good results for particle-turbulence interactions. Patankar (2001) developed a
formulation which is implicit for particle momentum coupling. We attempt to extend the
framework developed in CTR-ARBO3 by investigating the resolved particle regime. The
emphasis in this work is to develop a formulation for resolved particles, which can be
directly used in conjunction with formulation described in CTR-ARBO03, and thus can
be used to compute all regimes encountered in particulate flows. We first investigate the
formulation based on KT02 and propose modifications/improvements.

2. Governing equations

We assume that the particle size, d,,, is much larger than the grid spacing, A, as shown
in figure (1c). We also assume that the particles are rigid. The grid used is kept fixed
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and part of the control volumes occupy the particle domain. Following the notation used
in CTR-ARBO03, ©, and ©, represent the carrier and dispersed phase volume fractions,
respectively, and ©, + ©, = 1. We define the composite velocity as,

u=0,u,+(1-0,)u, (2.1)

where u, is the fluid velocity vector, and u, = U, 4+ w, X r the particle velocity. Here,
U, is the translational velocity and w, the angular velocity of rigid body rotation. Equa-
tion (2.1) represents the volume-weighted velocity at the interfacial control volumes.
For no-slip and non-permeable interface, u, = u,, the Navier-Stokes equations for an
incompressible fluid with rigid particles become:

v-u=0 (2.2)
611 T

po( G+ vw) = =V p+ 1ty v - (Vu+ (vu)") +pyg + F (2.3)
where 11, is the dynamic viscosity of fluid, g the gravitational force, and F the force acting
to enforce the rigid-body motion within the particle domain. If the particle is moving
with a velocity of u,, the fluid velocity inside the particle domain (©, = 1) should be
u = u,. The force imposing this condition is given as F;,, = ps(u, — u)/At. In KT02, a

first order approximation is used for the force in the region 0 < ©, < 1 to give,

u, —u
At

This force is applied to the centroid of the grid control volumes. In this work, we present
a better representation of the force to impose rigid body motion in the particle domain
as shown below.

F = py0p (2.4)

2.1. Volume fraction and interphase force

In order to compute the volume fraction (©,) we replace each particle by N, “material
points” distributed over the entire particle domain as shown in figure 2. Each material
point has an associated volume such that the total volume of the material points is equal
to the particle volume. The centroid of a material point cannot be inside the volume of
another. The volume fraction is easily obtained as

N
0, (%) = > ViGo (x — xx) (2.5)
k=1
where the summation is over all material points IV,,. Here xj, is the particle location, x
the centroid of a control volume, and V}, the volume of each material point. The function
G, is the interpolation operator given as

202

Go(xp) = %emp l_ i1 (@i — mp,z')ﬂ ) (2.6)
(0 271')

The Gaussian interpolation operator is normalized to satisfy fV G (§ - §”) dv =1,
where V is the grid control volume and the filter-width (o) is proportional to the grid
size. This enforces mass (or volume) conservation over the material points. It should be
noted that, the particle surface is diffused by this procedure over a length-scale of the
order of the grid spacing (A), and its effect on the flow is reduced with increased grid
resolution. We believe that for the purpose of capturing unsteady wake effects in turbulent
flows with many particles, this approximation is sufficient and is verified later. In KT02,
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volume fraction is computed by approximating the sphere by a polygon enclosing the
sphere and obtained by drawing tangents to the spherical surface in each control volume.
In turn, the effective total volume of the sphere is increased. Similar, error is introduced
at the particle interface.

The force acting on the fluid phase is given as

Nm
F(x) =) VipyGo (Lgt ") : (2.7)
k=1

This interpolation procedure gives a smoother force field near the particle surface. The
main advantages of using Gaussian interpolation and material points are: a) the inter-
phase force and volume fractions can be readily evaluated for arbitrary shaped particle,
b) the material points move as a rigid body, thus they do not change their positions rela-
tive to each other and recomputing volume fraction field does not require any expensive
computation of finding the intersections of particle surface with grid nodes, and c) same
interpolation scheme was used to compute force and volume fraction in simulations of
dilute and dense particulate flow (CTR-ARBO03).

3. Numerical Algorithm

The above system of equations is solved using the fractional step algorithm on un-
structured grids as described by Mahesh et al. (2004). The steps are summarized below:

e Step 1: Compute the volume fraction field using equation 2.5.

e Step 2: Advance the fluid momentum equations without the interphase force, F.

A el 2 n w2y o L Qui;  Ouiy A
At v Z iy + s on I~y Z b 0z * 0z !
facesofcv facesofcv
(3.1)

where f represents the face values, N the face-normal component, gy = pyun, and Ay
is the face area.
e Step 3: Compute the force on material points:

F _ u;‘ — u;p’k 5
ey = 0 (i (32)

where u* is interpolated to the material point k of a particle.

e Step 4: Project force from material points onto the grid control volume using equa-
tion 2.7.

e Step 5: Correct the velocity field within the particle domain by imposing the force:

polli = pgui + F;At (3.3)

e Step 6: Interpolate the velocity fields to the faces of the control volumes and solve
the Poisson equation for pressure:

1 —
VA= Y piidy (3.4)
facesofcv

e Step T: Reconstruct the pressure gradient, compute new face-based velocities, and
update the cv-velocities using the least-squares interpolation used by Mahesh et al.
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FIGURE 3. Distribution of particle volume fraction field for a single sphere on uniform grid.

(2004):

At - _6.71,' (35)

e Step 8: Advance the particle velocity. The total force F acting on a particle is simply
the summation (EkN;"l F,Vi) over all material points. Similarly, torque acting at each
material point is given as, T = EkN:ml (Fp x rp ) Vi, where rp; is the position vector of
the each material point from the particle centroid:

mpuy £t = mpuy ; — AtF, i + mpg; (3.6)
Lpwp it = Lywy; — AtTy; (3.7)

where m, is the particle mass, I, the moment of inertia, u,; and wp; the particle

translational and angular velocities, respectively.
e Step: 9 Advance the particle positions:
A

= S () (3.8)
The above formulation is similar to the one given in KT02 with some key differences: a) we
compute the volume fraction and force acting on the particle as described in section 2.1.
The forces acting at the material points within each particle are interpolated onto the
Eulerian grid by a Gaussian interpolation operator to give smoother representation of the
field (see equation 2.7), b) the rigid body motion to the fluid velocity is imposed before
the incompressibility constraint (KT02 impose Step 3 after solving the Poisson equation).
This way the flowfield over the computational domain satisfies the incompressibility
constraint exactly, however, rigid-body motion within the particle domain is imposed
only approximately, and c¢) the volume fraction computation is applicable to any arbitrary
shaped particle.

X

4. Results

We investigate the above formulation by simulating flow over a fized sphere at different
Reynolds numbers and compare the predicted drag coefficients with experimental data.
The computational domain is a rectangular box of dimension 8 x 8 x 8 m and the sphere
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FIGURE 4. Instantaneous streamlines for flow over a stationary sphere at different Reynolds
numbers: a) Re=20, b) Re=40, ¢) Re=100, d) Re=600, and e) Re=1000. Also shown are the
contours of particle volume fraction, ©,.
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FIGURE 5. Comparison of drag coefficient for flow over a fixed sphere:
law Clift et al. (1978), o present.

non-linear drag

diameter is d, = 0.8 m with its centroid located at [2,0,0]. The computational grid
consists of uniform, cubic elements of size 128 x 128 x 128 giving approximately 11 grid
cells in each direction over the particle domain (d,/A = 11). We impose uniform fluid
velocity at the inlet, convective boundary condition at the exit and periodic conditions
in the y and z directions.

Figure 3 shows the distribution of particle volume fraction together with the sphere
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surface. It shows that ©, is smoothed over the particle boundary and covers a domain
larger than the actual particle size by one grid cell. Increased resolution reduces this
spread. We used 5000 material points uniformly distributed over the particle domain
to compute the volume fraction field, however, out tests indicate that fewer material
points are enough to provide the volume fraction field. Flow over the fixed sphere was
simulated at six different Reynolds numbers (Re = p,d,U/u,) over a range of 20 — 1000.
The particle was fixed by specifying uj = 0 in Step 3 of the formulation and the equations
for particle motion are not necessary (Steps 8 and 9). Figure 4 shows the instantaneous
streamlines at different Reynolds numbers. The flowfield is symmetric for low Reynolds
numbers and unsteady vortex shedding is observed for higher Reynolds numbers (>
200). Figure 5 compares the drag coefficients at different Reynolds numbers with the
experimental curve fit, Cq = 2% (1 + 0.15Re®%87) obtained from Clift et al. (1978). The
drag coefficient obtained from present simulations is within 5-15% of the experimental
data with maximum error obtained at Re = 1000. Overprediction of drag is due to the
spreading of the particle domain as shown in figure 3. Similar results have been reported
in KT02.

5. Discussion

A formulation for simulating resolved particles (d, >> A) is developed based on the
work by Kajishima & Takagi (2002). Regions where particles are subgrid (d, < A), can
be captured by using the formulation developed in CTR-ARBO03. Thus, different regimes
encountered in particle-laden flows in the same simulation can be handled. The resolved
particle domain is replaced by material points which do not move relative to each other.
Forces acting at the material points are interpolated to the Eulerian grid using a Gaussian
interpolation operator. It was observed that the present formulation predicts the drag on
a fixed sphere correctly and captures unsteady wake effects with grid resolution (d,/A)
of the order 10.

Based on this work, a simple extension to the standard point-particle approach can be
devised. In LES or DNS of particle-laden channel flows the typical grid resolution in the
wall-normal direction is 3 —10 d,, (see Segura et al. 2004). With point-particle approach,
all of the interphase force is applied at the particle centroid. In regions with high grid
resolution, one may use material points to represent the particles. This will distribute
the interphase force over a length scale comparable to the particle diameter. In addition,
flow modification due to wake-effects can be captured by material points with sufficient
grid resolution.

The formulation presented here is explicit for momentum coupling and first order
accurate in time. The temporal accuracy can be increased by performing iterations per
time-step over the fluid and particle equations, however, is costly. Explicit coupling is
undesirable as it may give rise to instabilities and unphysical oscillations in drag/lift
forces. As shown by Patankar 2001 (also Sharma & Patankar 2004) an implicit momentum
coupling with little increase in computational time is possible and should be used. Our
future effort will focus on combining the present approach with their implicit algorithm
to develop a robust and accurate numerical scheme for simulations of particle/turbulence
interactions in complex flows.
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A presumed pdf model for droplet
evaporation/condensation in complex flows

By S. Apte AND S. Ghosal}

1. Motivation and objectives

In many multiphase flow problems, the condensed phase (liquid or solid) exists in
the form of a cloud of droplets of heterogeneous size in an ambient gas undergoing
time dependent (often turbulent) motion. One example is the problem of the formation
and growth of ice crystals in the “contrails” of aircraft [Paoli et al. 2002 - henceforth
cited as CTR-SPQ]. Other examples include, atmospheric aerosols (Binkowski & Shankar,
1995), rain drops in clouds (Shaw 2003), and, the fuel vapor from evaporating drops of
hydrocarbon fuel in spray combustion engines (Moin & Apte 2005). In order to be specific,
we shall assume here that the condensed phase is a liquid that undergoes evaporation.

The need for modeling the spray arises in both LES and DNS. In DNS; the size of a
computational grid is typically within an order of magnitude of the Kolmogorov scale.
However, if particle sizes and the average distance between particles is much smaller
than this, then clearly some kind of a statistical description of the particles need to be
adopted so as not to increase the computational effort by many orders of magnitude. In
LES the size of the computational grid is somewhere intermediate between the integral
scale and the Kolmogorov scale. Here once again some statistical modeling is needed if
particle sizes and the distance between them are much smaller than the LES grid.

In this report the statistical description based on a ‘presumed pdf’ (henceforth PPDF)
outlined in CTR-SP02 is worked out in detail for a specific evaporation model and for a
lognormal form of the presumed pdf. The predictions are checked against a full numerical
simulation that does not involve any statistical modeling. The general formalism had been
presented in Sec 4.1 of CTR-SP02 and need not be reported here. We will assume the
results presented in that earlier report and also adopt the notation used there.

2. The Model

The simplest nontrivial model follows from assuming that the “presumed pdf” is a two
parameter distribution depending on the first two moments m; and my in addition to the
droplet density N, = mg. Then the time evolution of N, m; and my are described by
equations (4.2) and (4.3) of CTR-SP02} with the series of moment equations truncated at
k = 2. In order to obtain explicitly the source terms we need to specify (a) the analytical
form of the presumed pdf and (b) the evaporation/condensation model.

2.1. FEwvaporation Law

We will assume that the fluid droplets are spherical and at a fixed temperature Tj.
Further, the local thermal field around a droplet is described by spherically symmetric

t Northwestern University
I please note that (4.3) in CTR-SP02 has a typographic error, it should read

O 4V - (myu) = k [ 04 nyi dr
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solutions of V2T = 0 with the far field temperature matched to T'(x,t), the temperature
at the location of the particle in the absence of the drop. Any cooling effect on the gas due
to particle evaporation is neglected. The rate of inflow of heat to the droplet can then be
easily calculated. If one assumes that this energy is expended in raising the temperature
of the liquid to its boiling point and evaporating some of the liquid, then, the change of
droplet radius is given by

dr A(T — To)

Rl ik St (2.1)
dt r
where A is a constant determined by properties of the gas and the liquid:
kg /pe (2.2)

L+Cg(T To)

where k, is the thermal diffusivity of the gas, L is the latent heat of vaporization, p, is
the liquid density, C; is the liquid specific heat and T is the temperature at the boiling
point.

2.2. The Presumed PDF

The form of the presumed pdf ¢ for the distribution of particle sizes will be assumed
lognormal;

5z (n(r/ry))” (2.3)

where the parameters Np,r, and o? are easﬂy seen to be related to mg,m; and may
through the relations

mo = Np; m1 = N,r, exp(c?/2); me = Nprf, exp(20?). (2.4)

np = ¢(r;mo, mi,ma) =

The mean particle radius (r) and the variance of the particle radius (Ar?) may be easily
shown to be related to r, and o by the relations

> (Ar?)] . a_ ()
c°=1In [1 + BE ] ; T, = T+ (A (2.5)

If (Ar?) < (r)* we get r, & (r) and o® = (Ar?)/r2 = (Ar?)/(r)?; the variance normal-
ized by the square of the mean.

2.3. Time Evolution of Distribution Parameters

The right hand sides of equations (4.3) in CTR-SP02 may be explicitly evaluated using
the presumed pdf (2.3) and the evaporation law (2.1). Further, using (2.4) the equations
can be transformed into a form that uses N,, r, and o? in place of mo,m; and may as
dependent variables:

D (N, Dr, Do?
~\— = = Or, = Og) 2.
Dt ( p ) 0, Dt S Dt S (26)
where the source terms S, and S, are given by
AT —Tp) 2A(T — T
S, =— AT =To) {2 —exp(-20%)}, S, = ¥ {1—exp(—=20%)}. (2.7)

p

Using the continuity equation, the equations (2.6) can also be expressed in conservative
form, which may be more suited for numerical methods such as finite volume approaches.
Equations (2.6) determine the value of the parameters N,, 7, and o2 at any time.
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Knowing these three parameters at any given point in space, “P”, the PDF of drop sizes in
the neighborhood of “P” is determined by (2.3). Thus, any desired quantity related to the
interaction between the gas phase variables (resolved) and condensed phase (unresolved)
may be calculated. For example, if droplet evaporation is a source of combustible vapors,
then we may write
DY,

thF =—w+V-(krVYr)+ S (2.8)
where YF is the vapor mass fraction, w is the rate of removal of vapor mass due to chemical
reaction, kp is a diffusion coefficient and the source term due to liquid evaporation from
the droplets is

S = —/ npt(4rr?) py dr = 4w Ape(T — To) Nprp exp(a? /2). (2.9)
0

To obtain the expression on the right hand side, 7 and n, was substituted from (2.1)
and (2.3) the integral was evaluated in order to sum the contributions from all droplet
sizes. Equations (2.6) and (2.8) may be solved together to account for the gas as well as
the condensed phase without the need for following the motion of each particle in the
condensed phase.

2.4. Physical Interpretation

The first of equations (2.6) simply means that the total number of droplets in a material
volume of fluid does not change. The density in the denominator takes account of the
fact that the volume of the material element could vary if the flow is compressible. At
first sight this conclusion may seem to be in conflict with the fact that droplets may
evaporate completely! However, this paradox is only superficial since in the language
of PDFs droplets never evaporate “completely”, rather, the distribution function n,
shifts continuously towards smaller and smaller particle sizes (r, — 0) so that the total
mass in the condensed phase goes arbitrarily close to zero. Thus, the right hand side of
(2.9) would be “machine zero” after sufficient time has evolved; whether one describes
this situation by saying “all droplets have evaporated” or the “distribution function has
become extremely localized around r = 0” is of course just a matter of linguistics.

The interpretation of the second of equations (2.6) is clearest if one considers the initial
PDF of drop sizes to be narrowly peaked around the mean size: {(Ar?) < (r)2. In this
case, as pointed out before, r, & (r) and o> & (Ar?)/r2 = (Ar®)/(r)*> < 1. Therefore,
the source terms of the equations for r, and o2 in (2.6) may be simplified:

Dr AT - T, Do? AN(T - T

LU _%(1 +20%), =8~ %02. (2.10)
Thus, if o = 0 initially, it remains zero and the mean droplet size remains exactly equal
to the size of any droplet in the monodisperse cluster since the evolution equation for
rp is the same as (2.1) for an individual drop. However, if ¢ is small but nonzero,
these equations predict (a) the mean of the distribution shifts to the left faster than the
radius of an individual droplet of radius r, (b) the variance of the distribution increases
rapidly. The physical reason behind these predictions may be found in the evaporation
law (2.1) according to which small droplets get smaller faster than large ones. Indeed, if
one considers three droplets of radii r; < ro < 73 then since r; decreases faster than rs,
r1 — r3 would get larger with time, that is the spread of the distribution increases. Also,
if initially ro was the mean of r; and r3, at later times the mean would be less than rs,



212 Apte & Ghosal

1.0}s

o
0

Li qui d Mass
o
(53]

o
)

0.0 L L L L L 1 L L L L 1

FIGURE 1. Temporal evolution of total mass of droplets in a Taylor-vortex flow for ¢ = 0.1:
o DNS, — — — model with S, given by equation (2.6), model with S, given by equa-
tion (3.5).

that is the average of the distribution decreases faster than an average sized drop. This
is indeed what equations (2.10) predicts.

3. A Problem with the model and its resolution

Figure 1 shows the change of total mass in the liquid phase as predicted by equations
(2.6) in a swirling ‘Taylor-vortex’ flow with an inhomogeneous initial temperature dis-
tribution. The details of the simulation are discussed in the following section. Here it
suffices to point out that the predicted liquid mass is in close agreement with the full
DNS of the system until very late times when apparently some kind of instability de-
velops causing the liquid mass to increase rapidly - a completely unphysical prediction -
since each individual droplet is evaporating!

3.1. Physical mechanism for anomalous growth
The instability is not a numerical one but its source is in the equations (2.6) themselves.

To see this, first note that the total volume of liquid in the condensed phase in the entire
domain () at a given instant may be expressed as

V(t)= / dv/ npgr® dr = ‘”/ av Nyrdexp ( 0° (3.1)
Q 0 3 3 Ja 2

where the second equality follows on substituting the expression (2.3) for n, and per-
forming the radial integration. As a particular case, suppose that system is homoge-
neous (N,,rp,0 are position independent). Further suppose there is no flow so that
D/Dt = §/0t in (2.6). In this case it is easy to show that

1dV  3AM(T —Tp) )
2 = 0 9exp(—202)] 2
V@ " [1 — 2exp(—207)] (3.2)

When ¢ <« 1 the right hand side is negative (assuming T' > T, everywhere) but as o
becomes large the sign of the term in [ ] changes and the volume of the condensed phase
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starts to increase! This is the source of the observed late time instability apparent in
figure 1.

3.2. Resolution of the difficulty
First note that V (¢) is related to the third moment ms(x,t) of the distribution:

4
V(t) = gw/ dV ms(x,t). (3.3)
Q
Now according to equation (4.3) of CTR-SP02 m3 actually has an evolution equation:
oo
% + V- (mzu) = 3/ r’nyt dr (3.4)
0

with a source term that is always negative as long as 7 < 0. The problem with our model
is that we discarded this moment equation (together with all higher moments) in order
to achieve a “closure”. Thus, in the current model, the behavior of “ms3” is a derived
quantity determined by the dynamics of mg, m1, ms and the presumed PDF, and there is
nothing in those lower order equations to ensure that V would decrease for evaporating
droplets.

The nature of the difficulty also suggests a resolution. If one were to adopt a moment
closure at the level of m3 and assume that the presumed PDF ¢ = ¢(mg, m1,ma, m3),
then the equation for mg3 would ensure that V' does not increase. Actually we can achieve
the same result within the lognormal formalism itself, if we notice that the lognormal
form of the presumed PDF with three independent parameters requires that we retain
any three of the equations of the moment hierarchy, not necessarily the first three! We will
therefore modify our closure assumption by enforcing the moment equations for mg,my
and ms and dropping all the rest. This is no more or no less justified than our original
closure but it does have the advantage that the physically important moment mg is
calculated directly from its evolution equation.

With this modification, the form of our basic model (2.6) remains unaltered, except
for the formula for the source term which now becomes:

Sy = AT -T) {2 — exp(—20?) — exp(—40?)} . (3.5)

2
3 T,

If the calculation leading up to (3.2) is repeated with the modified source term, it is
readily verified that this time V' < 0. In fact one need not assume statistical homogeneity
or that u = 0, in general,

f%z—h/wMA@—%wayﬁﬁ (3.6)
Q
which implies that V < 0 as long as T > Ty everywhere. Thus, stability is assured
and indeed when the simulation is repeated with the new source term (3.5), the liquid
mass decreases monotonically and in good agreement with experimental data as shown
in figure 1.

Another interesting property of equation (3.5) is that when 2 < 1, both the right
hand side of (3.5) and the second of equations (2.10) evaluate to

AT - Ty)

2
Tp

S, o2. (3.7)
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Thus, at low dispersions, enforcing the equation for mg automatically enforces the equa-
tion for me, until the dispersion gets very large.

4. Numerical Experiments

The PPDF model (2.6) with the modified source term (3.5) is used to simulate a cloud
of evaporating droplets in the presence of a temperature gradient in a two-dimensional
decaying Taylor vortex flow. Preliminary results are also presented for the case of forced
isotropic turbulence in a box. The flows considered here are periodic and solved in a
periodic box of dimensionless length 27. The reference length and velocity scales used in
the computation are 1 m and 1 m/s, respectively, giving a reference time-scale of 1 s.
Results are compared with direct numerical simulations using Lagrangain tracking of all
droplets.

4.1. Decaying Taylor Vortex
The initial conditions for the velocity components are:

u(z,y,0) = —mcoszsiny (4.1)
v(z,y,0) = wsinz cosy (4.2)
and initial temperature distribution is
T = Tpin + AT |1 — z/7| (4.3)
AT = Thae — Thnin (4.4)

We use isopropyl alcohol as the liquid phase, and we take Ty, = 355 K (the boiling
point of isopropyl alcohol) and AT = 2250 K, representative of the typical temperatures
achieved in turbulent combustion. Figure 2 shows the initial streamlines and the tem-
perature field. The Reynolds number is Re = 50,000 and we use 32 x 32 grid points for
this two-dimensional calculation. To test the model’s predictions we performed a DNS
by tracking 122880 droplets which were initially randomly distributed over the computa-
tional domain. Approximately 120 droplets were obtained per control volume providing
statistically meaningful results. For DNS, the initial droplet sizes in each control volume
were sampled from the lognormal distribution (2.3) with a mean droplet radius of 250
microns. Two cases with different variances (c = 0 and 0.1) were investigated. Using
the properties of isopropyl alcohol (Reid et al. 1987) the droplet life-time of a ro = 250
micron size drop can be estimated as,

2
- "o

2A (Tmam - TO)
This is shorter than an eddy turn over time (~ 1 s) and much shorter than the viscous

decay time of the eddies (~ 157,000 sec), so that for the duration of the computation,
the vortices are essentially stationary in time.

te ~0.23s (4.5)

41.1. Case 1: 6 =0

For this case, at the initial time, the computational domain was seeded with droplets
of a uniform size (250 pm). Figure 3 shows the time evolution of the droplet radius
averaged over the entire domain, the total liquid mass in the droplets, and the fuel vapor
mass fraction obtained from DNS and the model. All of these global averages are seen
to be predicted very accurately by the model.
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FIGURE 2. Initial streamlines and temperature distribution in a 2D Taylor-vortex flow:
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FI1GURE 3. Temporal evolution of global quantities for & = 0: o DNS, PPDF, (a) Volume
average of mean droplet radius (b) total liquid mass (both normalized by respective initial
values) and (c) fuel mass fraction, Y.

4.1.2. Case 2: 0 = 0.1

Keeping the flow conditions the same as in case 1, we introduce a small variance (o = 0.1)
in the initial droplet size distribution. For DNS, droplets in each control volume were
sampled from a lognormal distribution giving a scatter of £50 pum around the mean
droplet radius of 250 pum. Figure 4 shows the instantaneous distribution of fuel mass
fraction obtained from DNS and the model at a later time. The time-evolution of the
total liquid mass and fuel mass fraction in the computational domain (figure 5) also
show good agreement with the DNS. However, at large times, the mean droplet radius
obtained using PPDF is lower than that of DNS (figure 5). This could be an artifact of
our sampling procedure, since in DNS particles that have become too small are discarded
so they are no longer counted in the calculation of the mean. The loss of these small values
could upwardly bias the mean.

Next we calculate the average droplet radius within each control volume. Figure 6
shows the scatter plot of the mean droplet radius at each control volume obtained from
the DNS and the model. At ¢ = 0, the mean droplet radii in all control volumes obtained
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FIGURE 4. Contour plot of fuel mass fraction Yz at ¢t = 2.5 for ¢ = 0.1: (a) DNS, (b) PPDF
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FIGURE 5. Temporal evolution of global quantities for o = 0.1: o DNS, PPDF, (a) Volume
average of droplet radius, (b) total liquid mass (both normalized by respective initial values)
and (c) mean fuel mass fraction in volume, (Yr).
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FIGURE 6. Correlation analysis between the DNS and PPDF for droplet radius averaged over
a control volume. Scatter plot shows mean radius at each grid cell: a) t = 0, b) ¢t = 0.75, ¢)
t=15,d)t=2,e)t=25

from both DNS and model are the same. The small scatter is due to discrete sampling
of droplet sizes in DNS. With time, the mean droplet size in certain control volumes
decreases more rapidly due to evaporation and the scatter plot shifts to the left towards
zero radius, but the predictions from the two simulations are closely correlated. At large
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FIGURE 8. Instantaneous profiles of fuel mass fraction. Comparison of PPDF predictions with
standard Lagrangian Parcel Tracking (LPT) at t = 2.4: a) DNS, b) PPDF, c) LPT1; 6144
parcels, d) LPT2; 256 parcels.

times, the mean droplet radius from DNS is generally higher than that obtained from
the model. This is partly because of the fact that droplets smaller than a threshold were
removed in the DNS resulting in higher mean of the droplet radius. Local liquid mass, on
the other hand, shows good correlation between the model and the DNS mainly because
droplets of size less than the threshold contribute little to the mass in a control volume.

Figure 7 shows the pdf of the variable z = (Inr —In,) /o which should follow the unit
normal distribution if r is distributed lognormally. The data was obtained from the DNS
at times corresponding to those in figure 6. From the DNS, we collect all droplets in a
control volume, and use the data to determine r, and o for that control volume. Then
the variable z is calculated for each particle, the results binned and plotted. The same
procedure is repeated for each control volume. As shown in figure 7, initially the pdf
collapses on top of the standard normal distribution. With time, there are some small
deviations but the distribution does remain close to lognormal until most of the liquid
has evaporated.

4.1.3. PPDF or Lagrangian Parcels Tracking (LPT)?

In simulations of practical gas-turbine combustor, the spray is represented by compu-
tational particles or ‘parcels’ each representing a fixed number of droplets. Each parcel
carries with it properties: velocity, mass, radius, temperature etc. equal to that of some



218 Apte & Ghosal
M, EE

1.0E-09 3.7E-09 14E-08 52E-08 20E-07 7.3E-07 2.7E-06

(2) (b)

FIGURE 9. Instantaneous profiles of liquid mass dispersed in isotropic turbulence: a) DNS, b)
PPDF

‘average’ particle in the cloud that it represents (Apte et al. 2003a, Apte et al. 2003b).
Replacing a large clump of particles by a single ‘proxy’ in this way reduces the compu-
tational cost to manageable levels. The accuracy of the algorithm as well as its compu-
tational cost is inversely correlated to the number of particles that a parcel represents.
In order to compare the PPDF model with the LPT approach in regards to accuracy
as well as computational cost, two separate simulations were run with the LPT method
using the conditions corresponding to case 2 of the Taylor-vortex flow. We will call these
cases (a) LPT1: 3072 parcels each representing 40 droplets and (b) LPT2: 128 parcels
each representing 960 droplets. They both correspond to the same number (122,880) of
droplets present in the DNS. These numbers are typical of a realistic spray simulation in
complex combustors (Moin & Apte 2005). Figure 8 shows the instantaneous distributions
of fuel vapor mass fraction obtained from DNS, PPDF, LPT1, and LPT2. It is seen that
the accuracy in predicting the evolution of fuel mass fraction degrades considerably as
one goes from 40 to 960 drops per parcel. Table 4.1.3 shows the comparison of CPU time
per 100 iterations on a single processor of Origin2000 for the four different approaches.
It should be noted that the PPDF and LPT1 have comparable computational cost, with
the PPDF approach actually producing somewhat better agreement with DNS at a cost
that is slightly lower than the LPT1 simulation.

Method

CPUs in second per 100 iterations [1200| 75 85 50

DNS ‘ PPDF ‘ LPT1 ‘ LPT2 ‘

4.2. Forced Isotropic Turbulence
The PPDF model was used to simulate forced isotropic turbulence with temperature
gradients at Rey = 40 on a 643 grid. The initial temperature profile was chosen as

where AT = Ta0 — Tinin = 2000 K and T),,;,, = 700 K. The configuration is represen-
tative of the interaction between a turbulent flame and a sprinkler system. The droplets
that are introduced in a narrow band of thickness Ay = 0.03 x (27) around y = 0.
They may be thought of as originating from a sprinkler at y = 0 and being subsequently
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convected by the turbulent flow as they evaporate and cool the system. Figure 9 shows
an instantaneous map of the liquid mass in droplets obtained from the DNS and the
model. Preliminary results show good agreement with the DNS data. A more systematic
analysis for this turbulent flow case is in progress.

5. Discussion

The model developed here is based on certain assumptions which are valid to a greater
or lesser approximation depending on the physical system being described. Let us bring
together here these various assumptions, discuss under what conditions they are valid
and how the current theory may be expanded (if possible) when the assumptions fail to
be valid.

First, we wrote down a continuity equation in phase space for the PDF n,(x,r,t): (4.3)
of CTR-SP02. This equation is valid provided that

(a) the external field u varies on a length scale that is very much larger than A, the
scale on which n,, itself varies.

(b) there exists no processes that would result in abrupt changes in particle radii (i.e.
collisions, coalesence and break up of droplets).

(¢) the particles move with the local flow velocity.

Both (a) and (b) are reasonable if a < d < 1 where a is a characteristic particle radius,
d is a typical separation and 7 is the Kolmogorov scale. If d ~ 1 and one is solving a
DNS then the PDF approach is of course superfluous since one has only a few particles
per grid and one might as well track them individually and not rely on any modeling. If
on the other hand one is describing the system at a courser level, such as an LES then
A > dand d ~nord> n. In this case the velocity in (4.3) of CTR-SP02 need to be
decomposed into a slowly varying part and a second rapidly varying term. If one assumes
that the latter (the rapidly varying part) has a net diffusive effect (the “Fokker-Planck
Approximation”) then the moment equations get modified through the appearance of a
term aV2my, (where a > 0) on the right hand side and u is identified as the smooth part
of the velocity field. Thus, such a modification of the theory would extend it to situations
such as LES where u has a smooth and a fluctuating component. If a ~ d then assumption
(b) is no longer valid because of collisions between particles. Unlike the case of collisions
between rigid spheres, there exists no simple “collision operator” for the coalescence and
break up of fluid drops. In a turbulent fluid statistical break up models such as those due
to Kolmogorov predict an equilibrium distribution ng? that is lognormal (Kolmogorov
1941, Gorokhovski 2001). If the system is not very far from equilibrium a linearized
collision operator (n, —ns?)/7 (where 7 is a timescale parameter) may be used and the
moment equations should be modified to account for such a term. The approximation is
not likely to be valid far from equilibrium. Fortunately in many combustor systems there
are separate zones characterizing droplet break up and evaporation and the current model
might be useful in the latter zone while the break up region is handled by a different
approach. The third assumption is the assumption of zero particle inertia. Its accuracy
depends on the Reynolds number based on particle radius being small. The violation of
this assumption leads to important phenomena that are well known (Reade & Collins
2000).

Secondly we assumed that the system has a “universal behavior” in the sense that the
PDF has a certain prescribed form (such as lognormal) the only thing that varies with
position and time are the finite set of moments my, ..., m, that specify the distribution.
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Such ‘self-similarity’ is well known in systems with many degrees of freedom, the case of
an ideal gas being a familiar example. In that case, the velocity distribution is “locally
Maxwellian” everywhere, the parameters of the Maxellian obey certain moment equations
which are the familiar Navier-Stokes-Fourier equations of classical gas dynamics. The
self-similarity in the gas dynamic example follows from the smallness of the duration of
collisions compared to the time between collisions. The smallness of the ratio of these two
time-scales imply a collapse to a center manifold the evolution on which is described by
the Navier-Stokes-Fourier equations. In our case, we do not have an asymptotic formalism
such as the Chapman-Enskog development to systematically prove such a self-similar
behavior but rather such behavior is assumed apriori, an assumption that is open to
critique and subject to experimental test.

Thirdly we assumed lognormality and the evaporation law (2.1). These assumptions are
the least fundamental and are only incidental to the particular test cases we chose to run.
Both statistical arguments as well as experimental data exists to support the hypothesis
that in dense two phase turbulent flows, the distribution of droplet sizes is well approx-
imated by the lognormal distribution. Therefore, if we wish to model the zone beyond
the break up zone where droplet evaporation dominates droplet break up, the lognormal
assumption is a reasonable one at least for the particles entering our computational zone.
Subsequently, evaporation could change the shape of the distribution, and the accuracy
of the model would depend on whether or not droplet evaporation is essentially complete
before substantial departure from lognormality becomes an issue. If it does become an
issue, then one will need to replace ¢ by a more detailed model. Finally, equation (2.1)
was chosen for illustrative purposes only. Models that capture much finer details of the
particle evaporation or condensation process are well known in atmospheric physics. A
modified evaporation law may also be desirable for a technical reason: equation (2.1) has
the feature, that the radius of a droplet goes to zero in finite time ¢ = ¢, which leads to
a small denominator problem in equations (2.6) unless the droplet radius is artificially
prevented from going to zero. However, a better way of avoiding the singularity is to
modify the evaporation law (2.6), for example:

AT — T,
> _¥ {1 — exp(—r/b)} (5.1)
eliminates the finite time singularity. Here b is to be chosen as a length so small that the
mass of liquid droplets of radius less than b is essentially zero for all physical purposes. The
incorporation of these more complicated evaporation models involves only the practical
difficulty of evaluating more complicated integrals for the source terms.
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Spreading laws for diffusion in a
low-Reynolds-number channel

By J. Jiménezf,

1. Introduction

It was shown by del Alamo et al. (2004) and by Jiménez, del Alamo & Flores (2004) that
the spectral energy densities of the streamwise velocity fluctuations in turbulent channels
contain relatively-narrow ridges at long wavelengths, scaling as A, ~ )\;/ % in the viscous
and buffer sublayers, and as A, ~ )\i/ % in the logarithmic region. The wavelengths A,
and )\, in those expressions can be interpreted as characteristic streamwise and spanwise
dimensions of individual velocity structures, and it was argued by those authors that
those two laws could be explained by the spreading of wakes left in the mean velocity
profile by compact wall-normal-velocity structures.

It has indeed often been noted that, for long streamwise structures, the equations for
the streamwise and for the flow-normal velocity components approximately decouple, and
that the former can be approximated as a passive species advected by the latter (Orlandi
& Jiménez 1994). In a turbulent flow this advection can approximately be represented as a
turbulent diffusion. It was shown by del Alamo et al. (2004) that reasonable assumptions
on the advection velocity of the generating structures and on the effective eddy viscosity
yield spreading rates which agree quantitatively with the spectral square-root behavior
observed in the logarithmic layer. It was also noted by Jiménez, del Alamo & Flores (2004)
that the cube-root law is the similarity solution for diffusion in a uniform shear under
the effect of a constant diffusion coefficient, both of which are reasonable assumptions
near the wall. Finally, the physical structure of the wakes in the logarithmic region was
isolated by means of conditional statistics in del Alamo et al. (2005), and supporting
evidence for wakes in the buffer layer was provided by Jiménez, del Alamo & Flores
(2004).

On the other hand, the coexistence of two different power laws remains to our knowl-
edge undocumented in other flows, and would benefit from a quantitative theoretical
explanation in at least one case. Since diffusion in turbulent channels, which requires
delicate modelling of the effective diffusion coefficients at various flow locations, remains
complicated, we will present here the analysis of the spanwise spreading of a mixing
layer in a laminar low-Reynolds flow, and we will show that it already contains the two
power-law regimes.

That shear influences diffusion is well known. Taylor (1953, 1954) showed in two clas-
sic papers that the effective diffusion coefficient of a solute is strongly modified when
the mixing occurs in a shear flow. His analysis deals with the experimentally-important
case in which the solute is injected as a plug filling a tube, and the diffusion is nom-
inally streamwise. It therefore competes with the advection by the sheared streamwise
velocity, which generates a wall-normal concentration gradient that is responsible for the
enhanced diffusion. Recently Baroud et al. (2002) implemented a different experimental

t School of Aeronautics, Universidad Politécnica, 28040 Madrid, Spain
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FIGURE 1. Problem geometry

configuration in which the diffusion happens in a narrow channel in which two streams
of different solute concentration are injected side by side in the spanwise direction. The
conditions are such that, although the Reynolds number of the flow is low enough for
the mean velocity profile to be considered parabolic, the Péclét number of the solute
is large, and the lateral diffusion occurs slowly. Since the longitudinal evolution of the
mixing layer is then also slow, its interaction with the streamwise shear is weaker than
in the plug case, but its growth is still modified. It is indeed clear that, were it not for
the wall-normal diffusion, the mixing layer would grow at different rates at different wall
distances, corresponding to the different local velocities. In this paper we analyze the
diffusion of a solute under those conditions in enough detail to allow the experimental
arrangement to be used in the determination of molecular diffusion coefficients. As dis-
cussed above a secondary motivation is to document the dependence on the wall distance
of the spreading exponents, and to compare it with the ones observed in wall turbulence.

2. Basic scaling

Consider a channel between two parallel plates located at y = +h, and denote by =
and 7 the streamwise and spanwise coordinates (see figure 1). Normalize the parabolic
velocity profile U with its maximum, and the coordinates with h, so that U = 1 — y2.
Two streams with different concentrations of a passive scalar ¢ are initially at z > 0 and
z < 0, and come together at £ = 0. The diffusion equation for ¢ is

Pe(1 —y*)d,c = O~c + Oyyc + O, (2.1)

where Pe = U.h/k > 1, and & is the diffusivity of ¢. We will assume that there is no
diffusion flux into the walls, so that

Oyc =0, aty = *1, (2.2)
and that the mixing takes place between
c=+1/2,atZ = +o0. (2.3)

Note that, since the problem is linear and homogeneous in z, the same analysis can applied
to the spreading of an initially-thin contaminant layer by differentiating everything with
respect to z.

As long as T >> 1 the streamwise diffusion term is negligible with respect to the other
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FIGURE 2. Numerical solution of (2.4), for s > 0 and y < 0. The wall is at the bottom, and the
channel center at the top. The flow is from bottom-left to top—right. The isosurface represented
is ¢ = 0.3. The isolines on the top plane are ¢ = 0.05(0.05)0.3, and those at the bottom plane
are ¢ = 0.3(0.05)0.45.

two directions, and can be neglected. The spreading of the mixing layer involves the
balance of the streamwise advection with the spanwise diffusion, which have to be of the
same order. If ¥ = O(L), the spanwise scale then has to be Z = O(L/Pe)'/2. There is a
natural scaling, L = Pe, in which the three remaining terms of (2.1) are of comparable
magnitude. Defining stretched coordinates z = Z/Pe and z = Z/Pel/?, we get

(1 — y*)0yc = Oyyc + 0,,¢ + O(Pe?). (2.4)

The leading order of this equation is parameter-free, and can be integrated numerically.
The solution is symmetric with respect to ¥y = 0, and antisymmetric with respect to
z = 0, and is shown in figure 2 as a function of the scaled z, of y, and of the usual
similarity variable for two-dimensional diffusion problems

s =z/z'/2. (2.5)

It has been computed using a second-order Crank-Nicholson marching code, using 200
grid points in y, and between 200 and 800 points in z, depending on the distance to the
origin. The step in x was refined to insure grid independence in the critical region of small
2. The solution in the figure corresponds to the overlap of three different computations
at three different z-ranges, and the lack of discontinuities between the ranges was used
as a criterion for numerical convergence.

At the central plane the solution follows fairly well the square-root law, but near the
wall it spreads faster, specially at the early stages of the mixing. Even at the central
plane there is a transition in the growth rate around = = 1. To understand that behavior
we consider next the two limits in which z is either much smaller or much larger than
one.

3. The near limit, z < Pe

This is the relevant experimental case when Pe > 1, because further downstream the
mixing layer grows enough to interfere with the lateral walls of the apparatus. When
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z < 1, the longitudinal transport and the transverse diffusion are the dominant terms
in (2.4), and it is natural to attempt an expansion of the form

c=cCpo+TCni+..., (3.1)

where the coeflicient are functions of y and of s. They satisfy
s
Osscnk + (1 —y?) (iascn,k — kcn,k) = —OyyCn k-1, (3.2)

which is a well-ordered hierarchy in which y appears only as a parameter. In the leading-
order equation for ¢, the right-hand side vanishes, and the solution can be written
immediately as

Cno = %erf (Z/]2), (3.3)
where

Z =s(1—y?)'/% (3.4)
Equation (3.3) satisfies the boundary conditions for ¢ at z — 00, but not the zero-flux

conditions (2.2) at the walls.

Consider the neighborhood of the lower wall, and define the distance to the wall as
y' =y+1. When y' < 1 the velocity is U =~ 2y', and ¢y o behaves as y’l/z. In this region
the width of the mixing layer given by (3.3) is z = O([z/y']'/?), and there is a boundary
layer of thickness ¥’ = O(x!/?) in which the wall-normal diffusion cannot be neglected.
The three terms in (3.2) are then of the same order, and there are new similarity variables

n=y'/z"?, (3.5)
and
¢ =z/z'?, (3.6)
in terms of which (3.2) becomes
2
Opne + Occc + gﬂ(ﬂ@nc+§“8<c) = O0(z'/?). (3.7)

The error term in the right-hand side is due primarily to the expansion of U near the
wall in terms of 7. The concentration ¢ must satisfy (2.2) at n = 0, and (2.3) at { = +o0.
When 7 > 1, it also has to match the y < 1 limit of the outer solution (3.3),

eno s gerf [Cn/2)%] (3.8)

This is a parameter-free elliptic problem that can be solved numerically. Its solution,
¢BIL, is antisymmetric with respect to ¢ = 0, and is shown graphically in figure 3(a).
It has been obtained in the domain ¢ = (0, 8) and = (0, 6), using a straightforward
second-order finite-difference code with a grid of 200 x 250 points. It tends to (3.8) away
from the wall, but it does not become infinitely wide in ¢ at the wall.

Note that the higher-order terms of the expansion for ¢, become increasing singular
near the wall. While the only singularity of ¢, ¢ comes from the similarity variable Z,
the next term

oo ZBE3HYT?) g2
mT T aE(1 — )R ’

has an extra factor factor y’ 3 It is easy to show that ¢, xz* behaves near the wall as
(z/y"®)k = 3k Since Z is also approximately ¢n'/2 in that limit, it follows that the

(3.9)
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FIGURE 3. (a) Similarity solution for the boundary layer near the lower wall. , similarity
solution; ---- | outer solution (3.8). The contours are cpr = 0.1(0.1)0.4. (b) Correction to the
vertically-integrated concentration due to the boundary layer. ——, (cpr —c¢n); ---- , large-¢

limit, 0.5/¢2.

inner limit of the outer solution is a function of ¢ and 1 which has contributions from
all the orders in the expansion (3.3). It is however clear from the previous discussion
that the contributions to this function of the higher-order terms decay quickly as 75
increases, and that the boundary-layer solution can be matched safely to ¢, as long
as the matching is done far enough. On the other hand, this is a problem in which the
only way to avoid singularities in the higher-order terms is to use in the right-hand side
of (3.2) the composite solutions formed by the lower-order boundary-layer and outer
solutions, instead of just by the outer ones (Van Dyke 1964). This has no effect in the
outer region, where the inner and outer solution coincide but, within the boundary layer
where 8y, cpr, = O(z~2/), the correction zc; is O(z'/?). This was already suggested by
(3.7).
What is often measured in experiments is the vertically-integrated concentration

(c) = % /_1 cdy. (3.10)

It can be written in the present case as

(¢) & (cno) + 2Y3(Ac) = gs exp(—s°/8) [Io(s?/8) + i (s%/8)] + z'/3(Ac), (3.11)

where Iy and I; are Bessel functions. The correction (Ac) due to the boundary layers is

mmo=£ﬂ@rwmmm (3.12)

and is given in figure 3(b). For ¢ > 1 the solution cpy, is everywhere close to its asymptotic
value 1/2, and (3.12) is mostly due to the integral of ¢,, which can be evaluated exactly.
That limit, (Ac) & 1/2¢?, is included in figure 3(b) for comparison.

Because (cp)(s) and (Ac)(¢) depend differently on z it is impossible to express the
composite solution in terms of a single similarity variable but, since (3.11) and (3.12)
only hold in the limit z < 1, it is usually possible to write asymptotically valid expressions
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for most quantities. Consider for example the ‘slope’ thickness defined by

C — C—
§y = o2~ Coco 3.13
oL (3.13)

z

where c’; stands for ;¢ at z = 0. Using the expressions above,

5,1 = (ea)hz /% +(Ac); ~ gaflﬁ +0.0551, (3.14)

where (c,,); follows from (3.11), and (Ac); has been estimated numerically from figure
3(b). Similar expressions can be obtained for other product thicknesses.

4. The limit £ > Pe

When z > 1, the mixing layer becomes much wider than h, and the dominant diffusion
term is the one normal to the wall. We then look for expansions of the form,

C:Cf,0+$7lcf,1 + ..., (4.1)

where the coefficients are again functions of s and y, and satisfy,
s
ayny,k_H = —655Cf,k -1 - y2) (iasc.f’k + ka,k) . (4.2)

To leading order dyycso = 0 and, from the boundary conditions (2.2), it follows that ¢y
is only a function of s. To obtain it we must go to the next order, where

s
Oyyery =—(1- yz)éascf,o — 0s5Cf,0- (4.3)

The correction ¢y, also has to satisfy the Neumann conditions (2.2) at y = +1, and it
follows from the integration of (4.3) between the two walls that this is only possible if

S S
<(1 — y2)>§630f’0 + 6ssCf,0 = gasCf,o + 6ssCf,0 =0, (4.4)

from where we write immediately
1
co = {co) = ierf (s/V/6). (4.5)

Note that the similarity variable in (4.5) is the same as the one for {c,) in the previous
section, but that the spreading rate is different. The first-order correction cy; can be
obtained by integrating (4.3) with respect to y, and contains an unknown additive func-
tion of s that has to satisfy a diffusion equation similar to (4.4), but the solution is now
uniformly valid across the channel, and the correction is everywhere O(z~1). To leading
order, the mixing layer thickness is

8 = (6mz)'/2. (4.6)

In figure 4(a) the evolution of the slope thickness obtained from the numerical solution of
(2.4) is compared with the asymptotic expressions (3.14) and (4.6). The approximation
is much better in the downstream case than in the one near the origin, in agreement
with the different orders of the corrections which have been neglected, but the solution
deviates little in general from a square-root growth law.

Note that we could have written the similarity variable s in these formulas with an
arbitrary shift in the origin of z, since the approximation in this section does not hold
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FIGURE 4. (a) Slope thickness of the mixing layer, scaled with zt/2, , numerical result;
---- , small-z limit (3.14); —-— , large-z limit (4.6). (b) Lateral position of the isosurface
¢ = 0.4, scaled with z'/2, for different wall distances. ,y = 0.01; ---- | ¢ = 0.15;
—-—, central plane. ' = 1. The dotted line corresponds to z ~ z'/3.

at the physical origin of the mixing region. Any shift in the virtual origin can however
be expected to be at most g = O(1), and would only appear in a large-x expansion as
a term of O(z1).

The growth of the mixing layer at different distances from the wall is summarized in
figure 4(b), which is compiled from the numerical results. The square-root growth appears
as a constant in this plot, and it is the one followed by the layer in the central plane. The
two different constants at small and large downstream locations correspond to the two
outer solutions (3.8) and (4.5). Near the wall the layer follows initially the z'/3 growth
law, and only joins the square-root behavior when the mixing layer becomes vertically
uniform farther downstream. The behavior of the intermediate location at y' = 0.15
is interesting. That wall distance is initially within the outer core of the channel, and
follows approximately the square-root law. It then changes to an z!/3 behavior as it is
swallowed by the growth of the wall boundary layer, and it only returns to z'/? in the
downstream limit in which the layer uniformizes.

5. Conclusions

We have shown that the spreading of a spanwise discontinuity of a passive scalar in
a laminar channel is modified by the wall-normal diffusion due to the variation of the
advection velocity with the distance to the wall. Because the spreading is orthogonal to
the shear, this effect is weaker than in the case of longitudinal diffusion in tubes, but it has
several experimentally-relevant effects. First, the spreading in the central plane is always
approximately like Z1/2, but the reasons are different near the origin and far from it, and
the multiplicative constants change accordingly. Near the origin the wall-normal diffusion
is negligible in this central region, but it becomes dominant far downstream, where the
layer is much wider than the channel thickness. The layer then becomes uniform in the
wall-normal direction, and behaves as if the advection velocity were constant and equal
to the bulk velocity.

Near the origin the wall-normal diffusion is only important in boundary layers that
develop near each wall. They have widths and heights of the order of (Z/Pe)'/?, and
they account for corrections of that order to the square-root behavior of the vertically-



230 J. Jiménez

integrated scalar profiles. The transition between the two regimes occurs at Z/h = Pe,
when the wall layers fill the whole channel. We have given numerical results which can
be used to interpret experiments.

We have noted that similar spreading laws are found in the growth of the structures of
the streamwise velocity of turbulent channels. The effect of the wall-normal shear should
also be their origin in that case, but there are extra complications connected with the
variation of the eddy viscosity with the wall distance. That case will be the subject of a
future study.

This work was supported in part by CICYT, under grant BP12003-03434, and also the
Department of Energy under the ASC program. I am grateful to S. Lele for his careful
critique of an early version of this manuscript.
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Consistent hybrid LES-FDF formulation for the
simulation of turbulent combustion

By V. Raman, H. Pitsch AND R. O. Fox f

1. Motivation and objectives

The numerical simulation of turbulent reactive flows is a complex and challenging
problem with widespread practical use. Recent breakthroughs in algorithmic techniques
and the drastic increase in computing power have provided us with the tools to under-
stand the complex interaction between turbulence and chemical reactions. In the past
decade, the use of the large-eddy simulation (LES) technique has made it possible to
make accurate predictions of turbulent flows even for complex configurations. On the
other hand, the treatment of combustion is mainly through models similar to that uses
in the Reynolds-Averaged NS methods (RANS) like flamelet models or conditional mo-
ment closure type approximations. Although these models work well for systems that
exhibit little or no extinction, a higher-dimensional multi-scalar model is required to
describe slow and extinction chemistry. The transported-filtered density function (FDF)
(Colucci et al. 1998) method provides a natural starting point for such detailed descrip-
tion. The FDF technique has the key advantage that the reaction source term of the
scalars appears closed and requires no modeling.

Though a joint velocity-composition FDF transport equation can be formulated, nu-
merical implementations of this high-dimensional system pose stability and feasibility
issues. To overcome this problem, a hybrid approach is used where the velocity and tur-
bulence fields are solved using an Eulerian scheme (like RANS or LES), while the scalar
transport is handled using the FDF approach. Although the FDF technique has been
widely used in the RANS context, almost all the applications involve steady-state flows.
Since LES is inherently transient, the coupled LES-FDF method needs to maintain tem-
poral accuracy. Due to the statistical nature of the FDF scheme, such a coupled scheme
poses numerical accuracy issues.

Hence, in order to establish the accuracy of a LES-FDF implementation, a robust
consistency criterion is formulated. Based on redundant density fields carried by the
Eulerian as well as the Lagrangian part of the solver, it is required that the evolution
of all such density fields should be equivalent. The theoretical development guarantees
such an equivalence. The current implementation of the LES-FDF scheme is then used
to verify this equivalence in the context of a numerical simulation of a variable density
complex flow problem.

2. Hybrid LES-FDF scheme

In the hybrid scheme implemented here, the LES technique is based on a low-Mach
number approximation-based finite-volume scheme. Further details of the LES imple-
mentation can be found elsewhere (Pierce 2001; Pierce & Moin 2004). The Lagrangian
method uses stochastic particles to evolve the FDF.

1 Iowa State University
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FIGURE 1. Flowchart showing the coupled LES-FDF simulation with feedback.

The particle method is obtained from the fundamental FDF transport equation. The
FDF in a variable density flow can be defined as:

+oo
FL@ixt) = [ o000y -x)dy. 2.)
€0 (v,0) = 51~ 6 (3.1)], 2:2)

where ¢ is an N-dimensional delta function for an N-species system and 1) is the sam-
ple space variable in the composition domain. The FDF definition yields the following

property:

+oo +oo
/_ FLd'l/’:/_ p(y,t)G(y —x)dy =p. (2.3)
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Similarly, the filtered mean of any scalar Q4 can be defined as:

. +oo 1 +oo
Qo= _Quw.ynFudy == / (3. Qo (v, ) G(y —x)dy.  (2.4)

Using these definitions, the transport equation for the joint composition FDF can be
written as (Colucci et al. 1998; Jaberi et al. 1999)
oF, 0 . 0 [ —— 0 le——rr——
7L, 9 @F —(’F):—— V- pDV S() ) Fr|, (25
o g G+ o (wTer) =~ | (ST Dve e sw)) Rl e
where u is the filtered velocity field, uA’|{/J is the sub-filter velocity fluctuation conditioned
on the scalar, V- pDV | is the conditional micromixing term, and S is the reaction
source term. The conditional velocity term is modeled using the gradient-diffusion hy-
pothesis to give

OFL/p

8$i '
The conditional mixing term is closed using the Interaction-by-Exchange-with-the-Mean
(IEM) model (Villermaux 1986).

VoDV =V 5DV - T (- ), (2.7)

where Cy is scalar-to-mechanical time-scale ratio and 7 is a turbulence time scale. In the
present study we set Cp = 2 (Peters 2000) and use a turbulent-diffusivity-based time
scale (Colucci et al. 1998).

The high dimensionality of the FDF equation makes finite-differencing-based solution
techniques infeasible. A stochastic approach (Pope 2000) is used where the filtered mo-
mentum equations are solved using conventional grid-based techniques (like LES) while
the FDF equation is solved using a particle-based Monte-Carlo approach. The Lagrangian
approach uses a large ensemble of notional particles to represent the fluid. These parti-
cles evolve using a set of stochastic differential equations obtained from the above FDF
transport equation. The stochastic differential equations are functions of the filtered LES
flow fields. Hence, the Lagrangian system uses the filtered fields from the LES solver to
advance the notional particles. Using the particle properties, mean fields are constructed
that are fed back to the LES solver. The LES solver then advances the flow using these
mean fields. Figure 1 shows the flowchart of the hybrid algorithm.

Typically, the Lagrangian system provides the filtered density field that is then used
by the LES solver. However, the stochastic nature of the FDF scheme leads to large
statistical fluctuations in the filtered density field. Direct feedback of this noisy field
usually leads to numerical instabilities. Here, to increase the robustness of the feedback
algorithm, an additional enthalpy equation is used. Following (Muradoglu et al. 1999),
we define the equivalent enthalpy, h as

{4 Fr, = ~pDr (2.6)

A
hW) = 22 gy

where 7y is the ratio of the specific heats, Py is the operating pressure. Since the equiva-
lent enthalpy is only a function of the local thermochemical composition, the transport
equation for h can be derived from the FDF transport equation.

(2.8)

aph 0~ 0 [ o\ (i~ 1.,
W + 8_X (Puh) = 8_X (P (D + DT) &) +p (haSa - ;C¢pha¢ a) , (29)
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hOl 8¢a )
where « represents the components of the N-dimensional composition array. It is evident
that the physical transport terms in this equation can be treated in the same way as
a conserved scalar equation. The source terms, however, are not known and need to be
provided by the FDF solver. In terms of the particle properties, the source term is the
change of enthalpy of the particles due to reaction and mixing (Muradoglu et al. 1999):

(2.10)

— _ 1 N
Sh=7 (haSa - 2—O¢pha¢”a> . (2.11)
T

Once the equivalent enthalpy is known, the density field is found using the relation
obtained by filtering Eq. 2.8:
5= B
vy=1p'
where the low-Mach number assumption has been used to remove the pressure fluctua-
tions. This density field is then used to advance the LES flow solver. It is found that this
feedback mechanism is numerically stable and does not lead to large spikes in the dp/dt
term that appears in the continuity equation.

To increase statistical accuracy, large particle numbers are needed making such meth-
ods computationally expensive. Numerical implementation of the LES-FDF scheme is
an algorithmic challenge and novel techniques are used to reduce the computational ex-
pense of these schemes (Raman et al. 2004). A major issue in such implementations is
to consistently couple a stochastic FDF scheme and a deterministic Eulerian scheme.
Though steady-state-based flow solvers have been successfully used (Muradoglu et al.
1999), a consistent algorithm for a temporally variant system (like the LES-based ap-
proach) has not been studied in detail so far. Here we propose a criterion for a consistent
implementation and test it with a challenging reacting flow problem.

(2.12)

3. Consistency requirements

In the Lagrangian particle-based system, the computational domain is decomposed
into a large number of notional particles that represent the fluid. The particles are ini-
tially distributed uniformly and evolve in space and time using stochastic differential
equations (Pope 2000). Each particle carries information about its location, a composi-
tion vector and a representative weight. In order to pass information from and to the
LES solver, particle mean fields are obtained by a weighted summation process involving
particle properties in a given computational cell. The particle weight is initially assigned
to be a fraction of the local fluid mass such that the sum of the particle weights in a
computational cell equals the cell fluid mass.

_Vip;

Wi
Np

(3.1)
where wy, is the particle weight, V; is the cell volume, p; is the fluid density in cell ¢, and
N, is the number of particles in the cell. As the particles evolve with time, the sum of the
weights of the particles in a given cell is dependent on the enforcement of the continuity
equation. The particle weight has no direct evolution equation and will follow the particle
trajectory. At any time step, the particle-weights based density can be obtained by using
the sum of particle weights in a given cell.
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FIGURE 2. Schematic of the bluff-body flame configuration. The jet diameter D is 3.6 mm.

Do = %Zwk (3.2)

In addition to the particle weight, a mean density can also be obtained from the particle
composition vector based on thermochemical properties.

5ol = Zk 1wk/p(¢k)
3 Zk 1 Wk

where p(¢) is the thermochemical density computed using the particle composition. The
initial conditions are chosen such that p = p, at t = 0. As the particles evolve in space
and time, the density fields evolve through different equations, though indirectly, they
should all satisfy the continuity equation. By construction (Raman et al. 2004), the
thermochemical density (p,) and the LES density (p) evolve closely. This is ensured by
solving an ancillary enthalpy transport equation using Eulerian schemes. The source term

(3.3)
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Y (mm)

FIGURE 3. Streamtraces of the time-averaged velocity vector showing the counter-rotating
vortices.

for the enthalpy equation is provided using the particle properties. The Eulerian density
is obtained directly using this enthalpy field (Muradoglu et al. 1999).

On the other hand, the particle weights-based density (p,,) evolves with the particle
motion. Based on the continuity equation, it can be shown (Pope 2000) that for the
particles to be uniformly distributed, the particle-weights-based density should be equiv-
alent to the Eulerian density field. However, the stochastic evolution scheme will make
the particle-based mean fields noisy. Hence a strict equality can be obtained only by
time-averaging a statistically stationary field. Finite particle number density can also
introduce a bias in the mean fields. This will lead to a progressive divergence of the
particle-weights-based density field from the Eulerian field. Such a bias will be readily
observed through particle agglomeration in certain sections of the grid and depletion
of particles in other regions. The sampling error induced by such low particle number
density will further increase the error in mean-field estimation.

A consistent algorithm should hence maintain the equivalence of the three density fields
described above. It is noted that this amounts to a consistent evolution of the zeroth
moment of the FDF-transport equation. The accuracy of the scheme can be tested using
higher-order moments of the same equation. For the single-scalar flamelet model used
here, the first moment of the scalar can be evolved simultaneously by both the particle
and Eulerian systems. Such a moments-based validation procedure ensures a robust yet
simple way of demonstrating the accuracy of the numerical implementation. We will
illustrate the validation criteria using an experimental flame next.

4. Numerical test

A bluff-body stabilized experimental flame is simulated using the LES-FDF scheme.
The methane/hydrogen fuel jet is separated from the coflow of air by a solid body (Fig. 2).
The presence of this bluff-body induces strong recirculation zones that stabilize the flame.
In fact, time-averaged streamtraces (Fig. 3) show the presence of two counter-rotating
vortices that help mix the coflow with the fuel. The interaction of the high-velocity jets
with the slow recirculating fluid creates high shear rates where the reaction is controlled
predominantly by mixing. This complex unsteady reacting flow makes an ideal candidate
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FIGURE 4. Comparison of density obtained from particle weights (dashed line), particle compo-
sition (solid line) and LES flow solver (symbols). The four plots are at downstream locations of
(top) 13, 30, (bottom) 65, and 90 mm, respectively. The density values have been normalized
by the density of the coflow.

for testing the LES-FDF scheme. A computational domain of 256 x 128 x 32 is used
along with a nominal particle number density of 15 per cell. Combustion is described
using a laminar flamelet chemistry.

The FDF solver was initialized with 15 particles per cell. During the course of the
simulation, the total number of particles in the domain was in the range of 10.5-21
million. The simulations were started from cold-flow-converged results, after which the
mixture was ignited using the flamelet solution. All simulations were continued for 7 flow-
through times, where each flow through time is defined by the time it takes for a particle
to travel along the centerline from the inflow to the exit of the domain. The simulation
is time-averaged for 1.5 flow-through times starting at two different time-steps separated
by 1 flow-through time. The two time-averaged profiles differed by less than 2 % for the
mixture-fraction radial profiles ensuring that statistical stationarity has been reached.
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The LES-FDF simulation took roughly 200 hours on an 8-processor 600 MHz computer
to reach statistical stationarity.

Figure 4 shows time-averaged radial profiles of the three density fields. The density
profiles show very good agreement indicating that the FDF implementation is accurate.
It was further confirmed that the time-averaged particle number density was constant
indicating that there was no long term accumulation of statistical errors. This trend
continues at further downstream positions as well.

Figures 5 and 6 show the time-averaged mixture-fraction and RMS mixture-fraction
radial profiles at different axial locations. To aid in the comparison, the Eulerian mixture-
fraction and RMS mixture-fraction fields obtained from the finite-volume solution of
the scalar transport equation are also included. It is observed that the mean mixture-
fraction profiles obtained from the FDF solver and the Eulerian solver show excellent
agreement with one another and the experimental data as well. The near-bluff-body
profile shows a flat profile in the recirculation zone, further affirming the large-scale
mixing in this region. The sharp decay of the mixture fraction near the edge of the bluff
body is a region of large temperature changes, and consequently large density gradients.
At X = 30 mm, the recirculation region is slightly overpredicted, indicated by the large
mixture-fraction values as compared to experiments as well as a sharper decay at the
outer vortex signifying a thin reaction zone. Further downstream, the profiles are in
much better agreement with the experimental data. At X = 90 mm, the profiles indicate
a tendency of the flame to be narrower than the experimental observation. This is a
direct consequence of the grid coarsening to limit the number of computational cells, and
leads to the faster decay of the axial velocity.

The RMS profiles show good agreement with experimental data, although certain
discrepancies are noticed near the centerline. In general, it is observed that the results
agree well with the Eulerian computation as well. At the first axial position considered,
the FDF as well as Eulerian calculation show the right RMS profile indicating that the
large-scale recirculation has been captured accurately. It is noted that the sub-filter or the
unresolved variance in this zone is very small since the large-scale mixing renders the fluid
homogeneous. Similar trends are observed at X = 30, and 45 mm, but the extent of the
recirculation zone in the radial direction decreases as implied by the streamtrace profile
(Fig 3). At X = 65 mm, the secondary peak in the mixture-fraction RMS corresponding
to the end of the recirculation zone is captured very accurately. Further downstream, the
peak in the RMS profile is shifted towards the centerline which is consistent with the
mixture-fraction profiles that indicate a narrower jet spreading than the experimental
observation.

It is observed that the RMS profile from the FDF calculation at X = 30 mm and X =
45 mm show a peak near the centerline that is much larger than the experimental data.
One explanation for this behavior is the reduction of accuracy of the particle tracking
near the centerline. The LES solver uses a semi-implicit form, where the radial and
azimuthal directions are treated implicitly, and are hence independent of the CFL criteria
accounting for the radial and azimuthal components. However, the particle method is fully
explicit implying that in regions where the CFL criteria computed based on the radial or
azimuthal velocity is not satisfied, the errors could be significant. It was found from an
analysis of the turbulent-diffusivity profile that such an event is more likely to occur in
the region where the central fuel jet breaks down. For this flow, this region varied from
X =25mm to X = 60 mm. It is noted that the CFL criterion is not violated at each time
step, but the additive errors due to frequent violation of this condition led to a spurious
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increase in the RMS fluctuation. Since the purpose of this study is to establish the hybrid
technique as a viable tool for practical flows, no further evaluations are reported on this
observation. Although not reported here, increase in the nominal particle number density
decreased this error. Currently, a multi-step fractional-stepping algorithm is being tested
to overcome this problem.

5. Conclusion

A consistent hybrid LES-FDF scheme has been developed and implemented for vari-
able density flows. The LES-FDF scheme has been validated by using a density-based
consistency condition. An experimental flame configuration was used to test the valida-
tion scheme. Currently, direct integration of the chemical source term is being used with
a detailed chemical mechanism to fully exploit the advantages of the LES-FDF technique.
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Conditional filtering method for large eddy
simulation of turbulent nonpremixed combustion

By S.H. Kim AND H. Pitsch

1. Motivation and objectives

In the fast chemistry limit of turbulent nonpremixed combustion, turbulence does
not affect the local flame structure and a reactive scalar is given as a function of the
mixture fraction, which describes mixing of fuel and oxidizer (Bilger 1980). This assump-
tion allows the statistics of reactive scalars to be determined from those of the mixture
fraction. Although the fast chemistry limit gives a leading order solution for turbulent
nonpremixed combustion, the separation of time scales is not generally acceptable due
to a wide spectrum of time scales involved in turbulence and chemical reactions.

Turbulent straining enhances scalar gradients and diffusive heat loss from flames to sur-
rounding fluid parcels. Scalar dissipation rate, which measures the diffusive mixing rate,
is a critical parameter to describe the nonequilibrium effects. With excessive scalar dis-
sipation rate, nonpremixed flames may be locally extinguished. The extinguished flames
may be reignited by diffusive transfer of heat and radicals from burning flames, when the
scalar dissipation rate falls below a certain level. The modeling of local extinction and
reignition requires detailed description of transient response of local flame structure to
scalar dissipation fluctuations.

Large eddy simulation (LES) offers two advantages over the Reynolds averaged Navier
Stokes (RANS) approach in computation of turbulent flames. First, mixing processes
can be predicted with improved accuracy because large scale structures, which dominates
global mixing characteristics, are resolved in LES. Second, LES can capture the transient
response of the local flame structure to the unsteadiness of the flow field on the order of
resolved time scale or longer. This makes LES attractive for the computation of turbulent
flames, in which nonlinear interactions of turbulence and chemical reactions are of critical
importance, e.g., local extinction and reignition in turbulent nonpremixed flames.

Subgrid scale modeling of combustion processes in LES is a prominent research topic.
A subgrid scale model usually adopts the scale invariance assumption, which implies
that certain features of physical processes are invariant in different length scales (Men-
eveau & Katz 2000). This assumption works well when the major part of subgrid scale
contributions comes from length scales just smaller than the filter width. The scale invari-
ance assumption is, therefore, not relevant to subgrid scale combustion processes, which
mostly occur at the dissipative scales. The filterered density function method (Jaberi
et al. 1999), the linear eddy model (Kerstein 1992), the laminar flamelet model (Pitsch
2002), the conditional source term estimation (Bushe & Steiner 1999) and the progress-
variable approach (Pierce & Moin 2004) have been proposed as a subgrid combustion
model.

The conditional moment closure (CMC) model solves the conditional moments of re-
active scalars to resolve the closure problem of nonlinear chemical reactions (Bilger 1993;
Klimenko 1990; Klimenko & Bilger 1999). In a turbulent nonpremixed flame, fluctuations
of reactive scalars are primarily associated with those of the mixture fraction. Nonlinear
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chemical reactions can, therefore, be closed using statistics conditioned on the mixture
fraction. The first-order CMC model, which assumes that fluctuations of the reactive
scalars about the conditional means are small enough for chemical reactions to be closed
using the conditional means, has been successfully applied to turbulent nonpremixed
flames with low levels of local extinction (Kim et al. 2000; Smith et al. 1995). Refined
approaches, such as second-order closure and double conditioning are being investigated
for application to significant local extinction (Kim et al. 2002; Kim & Huh 2004; Kronen-
berg 2004; Cha & Pitsch 2002). Although the CMC model has been extensively studied
for RANS, there have been few studies in the context of LES (Bushe & Steiner 1999).

The objective of this study is to develop a subgrid combustion model for turbulent
nonpremixed flames with local extinction and reignition, based on the concept of CMC.
In what follows, the conditionally filtered equations for reactive scalars are derived and
closure assumptions are discussed. The integrated conditional filtering for a reacting
shear layer is introduced. The closure assumptions and the performance of the model are
tested with direct numerical simulation (DNS) data of reacting mixing layers.

2. Mathematical formulation
2.1. Conditional filtering

Conventional filtering smoothes out all small scale details and filtered chemical reaction
rates are generally not well reconstructed from the (conventionally) filtered scalar field. In
turbulent nonpremixed flames the mixture fraction, which describes the extent of mixing
of fuel and oxidizer, is a key quantity to describe the flame structure (Klimenko & Bilger
1999). Here we adopt density weighted filtering conditioned on iso-surfaces of the mixture
fraction to resolve small scale mixing and chemical reactions in a nonpremixed flame:

Al x — fV p¢(x, t)(S(é'(X, t) B U)G(X - XI; Af)dx'
Pln(n, x,t) = fV po(E(x, 1) — n)Gl(x — XI;Af)dXI

(2.1)

where G(x — x'; Ay) is a filtering function of specified width, A;. We assume constant
filter width so that the filtering operation commutes with differentiation. ¢ is the Dirac
delta function and £ is the mixture fraction. In Eq. (2.1), filtering is made only on iso-7
surfaces because of the weighting with §(£(x,t) — 7). This decouples physical processes
across a flame from those on a flame surface. The denominator of Eq.(2.1) is the subgrid
probability density function (PDF) of the mixture fraction, P, weighted by the condi-
tionally filtered density. The density weighted filtered value of ¢ can be calculated by
integration in 7 space:

I padlnPe (n)dn
D

5 = ) (22)

where 7 is the filtered density.
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2.2. Conditionally filtered equation

The conditionally filtered equation for a reactive scalar can be derived using the transport
equation for the § function:

- (pD
9081, G (s, = — 0¥ (kDY)
ot on (2.3)
__0%6,N 0V (p,DVE) '
on? on ’

where 6, = 6(£(x,t) —n). D is the molecular diffusivity. The molecular diffusivity is
assumed to be equal for all scalars here. N = DV¢ - V€ is the scalar dissipation rate.
Multiplying Eq. (2.3) by Y; and adding the equation for Y; multiplied by 6, gives

9pd,Y; 9?pé,NY; N 26p6nDV£ -VY;

+ V- (pdyvYi) = pyw; —

2
" oV - (po. Dvag’) o 24)
- Sl 4V - (5,pDVYI),
on
where w; is the chemical reaction rate of species i. Filtering Eq. (2.4) gives
dpyP:Yi|n —
P2l 1 - (o PivViT)
——  ’pyPNYiln
= poFewiln — "6%'
o (2.5)
9pyPeDVE - VYiln
+2
on
oV - (pP:Y; DV -
- BBV 1S - (5 P DYV

To identify the resolved part of the equation, we substitute the decompositions, Y; =
Yiln+Y/,v=vlp++v' and N = N|n + N, into Eq. (2.5). This gives

dp, P:Y; -
p"Tim + V- (pyPevin Yiln)
?pnPeNn Yiln
= ppPewiln — ————— 2.
ni§ | 6772 ( 6)
) ——0Yj|n
+317<an n an>+pn€ + ot
where
1 T Op PEJ-":|
F; = =V - (pyPeJF) + —L="1 2.7
ol | (pnFe Ji) o (2.7)
T = —=vYiln +vin Yiln (2.8)
1 [ dpnPe (NYiln—NIn Y;In) —  ___ __0Viy
JI = - +2|DVY;-Vén—-N ’ 2.9
P an &ln In an (2.9)
1 (pyP:Y;D -
M; = _ OV (pn PeYiDVE[m) +V - (py PeDVYin)| - (2.10)
pabe | on
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The conditionally filtered equations for other reactive scalars can be obtained by the
same procedure.

2.3. Primary closures

F; represents the subgrid transport of reactive scalars in (x,n) space: J* for x space and
J;! for n space. It plays an important role in reignition of locally extinguished flames and
stablization of lifted diffusion flames. Extinguished flames are reignited through transfer
of heat and species from burning flames. Reignition may occur by the edge flame propa-
gation along iso-surfaces of the mixture fraction and also by diffusion normal to the iso-n
surfaces following flame folding (Sripakagorn et al. 2004). These interactions between
neighboring flames are represented by F; in the conditionally filtered equation. When we
assume that flame propagation along the isopleth is the most important mechanism for
reignition and flame stablization, F; can be approximated as

1
Fym =V - (o PeTY). (2.11)

Pnte

Next we are concerned with the closure of M;. It can be easily shown that

_ 0V - (ps, DVY;)
on

When the density and the molecular diffusivity are constant, we have

_ 0V - (pPDVYi|n)
on

V - [pDV(5,Y;)] = + V- (8,pDVY). (2.12)

V - [pDV(PFin)] = LV (PpDVYI).  (213)

The term, M;, therefore, represents the molecular transport of Tm on iso-n surfaces. The
molecular transport is much smaller than the turbulent transport and usually neglected
in RANS of high Reynolds number flows. However, in LES, the molecular transport term
can be of the same order as the unresolved subgrid one. Based on Eq. (2.13) we propose
the following closure for M;:

M; V- [y D,V (PeYiln)], (2.14)

where D, = D|n.

2.4. Closure of chemical reaction rates

In turbulent nonpremixed flames, fluctuations of reactive scalars are primarily associated
with those of the mixture fraction. However, fluctuations of reactive scalars on iso-7
surfaces, which are much smaller than those in x space, can be significant when turbulent
time scales are of the order of chemical ones. Assuming that fluctuations on iso-7 surfaces
occur on the large scales, the conditionally filtered reaction rate can be calculated as

wi(p7Y7T)|n ~ wi(pn7Y—|777T_|n)' (215)

2.5. Integrated conditional filtering for a reacting shear layer

The conditionally filtered quantity may not be properly evaluated with negligible subgrid
scale probability. For example, when we take measurements at the locations far from the
axis of a turbulent jet diffusion flame, we seldom observe mixtures with £ =~ 1 and have
difficulty in evaluating conditionally filtered quantities at = 1. The conditionally filtered
equation is valid over the whole flow field but becomes trivial when P is negligible. It
is physically meaningful in a small volume in the four-dimensional probability space,
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Case Da q U/ 1/l Allk Rex Grid
H1 2.52E4+4 acpyTo 1.03 27.1 1.37 47 192x128x128
H2 757E+4 acpTo 1.03 271 1.37 47 192x128x128
H3 1.51E45 acpyTo 1.03 27.1 1.37 47 192x128x128
Cl1 2.06E+3 0 1.03 27.1 1.37 47 192x128x128
C2 4.0E+3 0 0.80 50.2 1.72 73.5 256x256x256

TABLE 1. Characteristics of the simulations (I: integral length scale, lx: Kolmogorov length
scale, u': r.m.s. velocity, A: grid spacing, Rex: Taylor scale Reynolds number, Da = Apol/v/,
po: reference density)

(x,7m), where P is not negligible. Here, integrated conditional filtering is introduced as
an alternative for Eq. (2.1), which is computationally less expensive and solves the low
probability problem:

ffooo w [, o(x,1)0(E(x,t) — n)G(x — x'; Ay)dx'dxy

ffooowfv 5(€(X,t) _n)G(X_XI;Af)Xmd,Z'l ] (216)

¢_|77 (77:-"52,183;15)

where x = (x1, %2, 23). w is the weighting factor that depends on the coordinate system.
The integration direction depends on the case, but should go through the flame brush.
In a round jet flame x; = w = r, where r is the radial coordinate. The equation for Tm*
can be written as

8p*P*Y~—|n* I —
— L AV (pi PN Yiln)

ot
. p PNy il
.k D* 3 ¢
— ptPfwin - 5 (2.17)
6 * Tk *6Yz|77* * ¥ Tk * % *
+25 <pnP§N|n B ) + piPFY + pLPE MY,

where the superscript, *, represents the integrated quantity. This is the conservative form
of the conditionally filtered species equation. Using the equation for P we obtain

aYiln" Yl
ot on?
where p; P is assumed to have a weak spatial dependence. This equation has a similar
form to the Eulerian laminar flamelet model of Pitsch (2002), but includes the subgrid
transport term, F}*, and the molecular transport term, which are neglected in the Eulerian
flamelet model. Closure of F;* will be addressed in a subsequent section.

+vn -VYin =Np' +wiln +Ff+V - (DVYiln), (2.18)

3. Direct numerical simulation

DNS was performed to validate the present formulation. The simulated flow field is a
shear-free, temporally developing mixing layer. Initially separated fuel and oxidizer mix
in the presence of decaying turbulence, and react according to a single-step reaction:

F+0—2P
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FIGURE 1. Instantaneous fields of the product mass fraction on two x1 — 2 planes for C2 (The
line represents the stoichiometric surface).

where F', O and P represent fuel, oxidant and product, respectively. The stoichiometric
mixture fraction is 0.5 and the reaction rate is given by

w = ApYrYo exp (—ﬁ) (3.1)
where Yp and Yp represent the mass fractions of fuel and of oxidizer, respectively.
0 = (T — To)/(Ty — Tp) is the nondimensional temperature, where Ty and T repre-
sent the adiabatic flame temperature and reference temperature, respectively. The heat
release parameter, a = Ty /Ty — 1, is given by q/(cpTo), where g and ¢, are heat release
per unit mass and the specific heat at constant pressure, respectively. 8 = T, /T is the
nondimensional activation temperature, where T, is the activation temperature. Chemi-
cal parameters used here are a=6 and 3=28. The pre-exponential factor, A, is adjusted
to control the level of local extinction.

The fully compressible Navier-Stokes equations are solved with the conservation equa-
tions of the mass fractions of the fuel and the oxidizer. A low storage fourth-order Runge-
Kutta method is used for time integration, while spatial derivatives are evaluated with
a sixth-order compact finite difference scheme (Kennedy et al. 2000; Lele 1992). The
computation domain is periodic in the zo and z3 directions, while it has nonreflecting
boundaries in the z;-direction (Poinsot & Lele 1992). Table 1 shows characteristics of
the simulations. The initial Mach number based on the r.m.s. velocity fluctuations and
the temperature of fuel and oxidizer is below 0.1 for all the cases, so that compressibility
effects are negligible. The nondimensional temperature, 8, is set to be the product mass
fraction for the constant density cases, C1 and C2. The dynamic viscosity is a constant
for the given case here. C1, C2 and H2 have a similar level of local extinction. The level
of local extinction for H3 is lower than that for H2 , while that for H1 is more significant.

4. Results and discussion

Figure 1 shows the instantaneous fields of the product mass fraction on an z; — 5 plane
for the case, C2, at 7 & 2, where the nondimensional time, 7, is normalized by the initial
eddy turn over time. There is significant local extinction in Fig. 2. The extinguished part
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FIGURE 2. Distribution of the scalar FI1GURE 3. Distribution of the scalar dissipa-
dissipation rate on an z» — x3 plane for C2. tion rate averaged in the zi-direction with the

condition of 0.4 < £ < 0.6 for C2.

of the flame surface is of large scale and is not much distorted by small scale eddies,
indicating that extinction processes are dominated by large scale structures in this case.
The product concentration is high near a vortex core where the scalar dissipation is low.
Note that the variation of Yp along the stoichiometric surface is significant near the
vortex core. Rolling up of the flame surface makes extinguished and burning flames be
closer around the vortex core.

The underlying assumption of the conditional filtering method is that fluctuations of
reactive scalars on iso-surfaces of the mixture fraction are primarily due to large scale
fluctuations of the scalar dissipation rate. The justification of this assumption has been
discussed in Pitsch (2002). For a further validation, we need to investigate the length
scales of scalar dissipation fluctuations on iso-7 surfaces. Figure 2 shows the distribution
of the scalar dissipation rate in an z3-z3 plane for the case, C2, at 7 ~ 2. High scalar dis-
sipation rates are associated with thin sheet-like structures in Fig. 2. The length scales
of scalar dissipation rate across flames are much smaller than those along flame sur-
faces. Figure 3 shows the distribution of the integrated scalar dissipation rates on the
stoichiometric surfaces for C2. Scalar dissipation rates for 0.4 < ¢ < 0.6 are averaged
in the x;-direction. Note that the structures with high scalar dissipation rates have a
range of length scales and that higher scalar dissipation rates are associated with large
scale structures. Nonpremixed flames are sensitive to the spatial and temporal fluctua-
tions of the scalar dissipation rate. With excessive scalar dissipation rate, nonpremixed
flames may be locally extinguished and flame holes appear. Capturing high scalar dissi-
pation events is crucial to predict the extinction process. Although high scalar dissipation
rates are concentrated in a very small fraction of the fluid, these are mainly associated
with counter-flowing large scale structures that carry high and low values of the scalar
(Warhaft 2000; Shriman & Siggia 2000). The major part of high scalar dissipation events
can, therefore, be captured from a resolved large scale field, while filtering smoothes out
highest scalar dissipation events. L

Figure 4(a) shows the conditionally filtered reaction rates, w|ns, for H2 at 7 =~ 2,
where the subscript, st, denotes stoichiometric conditions. A top hat filter with a filter
width of Ay = 8A was used. The predicted reaction rates are in excellent agreement
with the filtered DNS data in Fig. 4(a), while they are slightly overpredicted for a small
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fraction of points with higher reaction rates. The overprediction of the reaction rates
occurs in the region close to interface between burning and extinguished flames. In that
region the conditional subgrid fluctuations of reactive scalars are large enough for the
higher order correlations to be nonnegligible. The first-order closure tends to overpredict
the reaction rates when the reactive scalars ﬁucMe* near the maximum reaction rate.
Figure 4(b) shows the integrated reaction rate, w|ns , for H2. The overall agreement is
similar to that for w|ns;. Figure 4(c) shows the conditionally filtered reaction rates, w|ns,
for C2 at 7 = 2. The prediction is well correlated with the filtered DNS, while it is more
scattered than in H2. Here, in addition to the overprediction at higher reaction rates,
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As/A 4 8 12 16 24
H1 0.9995 0.9955 0.9868 0.9728 0.9426
H2 0.9983 0.9881 0.9550 0.9313 0.8361
H3  0.9979 0.9880 0.9723 0.9461 0.8730
Cl  0.9986 0.9905 0.9765 0.9606 0.9247

Af/A 4 8 16 32 48
C2  0.9909 0.9552 0.8871 0.7940 0.7367

TABLE 2. Correlation coefficients for w|ns;

Ar/A 4 8 12 16 24
H1 0.9695 0.9486 0.9324 0.9132 0.8819
H2 0.9371 0.8739 0.8325 0.6928 0.5164
H3 0.9801 0.9229 0.8621 0.7933 0.6952
Cl  0.9480 0.9182 0.9014 0.8744 0.8467

As/A 4 8 16 32 48
C2  0.8345 0.8098 0.7978 0.7785 0.7476

TaBLE 3. Correlation coefficients for w|ns;

the reaction rates are underpredicted at lower reaction rates. In Fig. 4(d) the accuracy
of the integrated reaction rate for C2 is not as good as for H2.

The correlation coefficients between the filtered DNS data and the model prediction
for all the test cases are shown in Table 2:

(W|773t w(YlnstaTlnst» - <w|nst)<w(Y|nst;T|nst»
\/((wlnst2> — (lnse)?) (W (Y nst, Tnst)?) — (Y[t Tlnse))?)

The correlation coefficients are above 0.9 except for C2, when the filter width, Ay, is
smaller than the integral length scale, . For C2 the correlation coeflicient remains about
0.9 when Ay < 0.51. Accuracy of the first-order closure is not much affected by the
level of local extinction. Note that the correlation coefficient decreases slowly with Aj.
This implies that the grid spacing for conditionally filtered equations can be larger than
that for the flow field, which significantly reduces the computational cost for solving the
conditionally filtered equations. Table 3 shows the correlation coefficients for m* The
integration direction is z; and w = 1. The correlation coefficients remains about 0.8
when I/A; < 0.5, which are lower than those for w|n,. Due to the integration, w|n*
contains the contribution of the subgrid fluctuations along the z;-direction. The subgrid
fluctuations along the x;-direction are more significant for C2, which has higher Reynolds
number.

Conditional filtering adds a new independent variable in the system of equations,
which substantially increases the computational cost. However, the computational cost
can be reduced when the characteristics of the conditionally filtered equation are properly
considered. P (n,:) has a very narrow distribution as compared with the thickness of the
mixing layer as in Fig. 1. Since all the terms in the conservative form of the conditionally
filtered equations are weighted by P, only a small region of (x,7) space is active. We do
not need to solve the equations in the region where F is negligible. In addition, according

C =

(4.1)
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to the results in Table 2, the filter width for the conditionally filtered equations can be
larger than that for the flow field. Another way to reduce the computational cost is the
integrated conditional filtering approach. In this approach, the number of independent
variables is reduced by one due to integration in one spatial coordinate.

The integrated conditional filtering equation, Eq. (2.18), is solved to validate the per-
formance of the model. N—|77ﬁk and v_|77;'= are taken from the DNS data to avoid ambiguity
in the modeling of the flow and mixing field. The conditional subgrid scale flux, J;*, is
modeled by an eddy diffusivity model:

JX* ~ —DyVYi|n (4.2)

Sij is the filtered strain rate tensor. Although a dynamic model could be used to deter-
mine the value of ¢4, a constant value of ¢; = 0.1 has been used here. Because pj P} has
a weak spatial dependence, F;* can be approximated as

where Dy is given by

Fr = V- (D,VYin). (4.4)

The filter width is taken as Ay = 8A. The physical domain is discretized into 32 x 32
grid points, while 50 grid points are used in mixture fraction space.

The spatial distributions of Yp|nst* at 7 = 2 are shown in Fig. 5. The present method
predicts the location and size of flame holes for H1 with good accuracy, while the mini-
mum of Yp|’f}st* in the flame holes is overpredicted due to the filtering. Flame holes with
large length scales are also well predicted for C2.

The variation of the conditional average in a transverse direction is small in a turbulent
shear layer (Klimenko 1995). A priori tests show that the variation of the conditionally
filtered quantity is not as small as that of the conditional average. As shown in Fig. 2,
due to the folding of the flame surface, burning and extinguished flamelets can coexist
in the integration direction. The averages have then contributions from the flames with
different strain rate history, which causes errors in the integrated approach. The variation
of the conditional average is not significant because flame surfaces fluctuate in the shear
layer.

Although the present method underpredicts large excursions of a reactive scalar from
the conditionally filtered value, it can reproduce the major part of extinction processes,
which are associated with large scale structures. Pitsch (2002) showed in LES of a tur-
bulent methane/air jet flame that the prediction of pollutant formation can be improved
by considering large scale fluctuations of the scalar dissipation rate. The subgrid fluctu-
ations of scalar dissipation could be considered by second-order closure of conditionally
filtered reaction rates (Klimenko & Bilger 1999; Kim et al. 2002; Kim & Huh 2004).

5. Conclusions

The conditional filtering method is proposed as a subgrid combustion model in LES of
turbulent nonpremixed combustion. Filtering conditioned on iso-surfaces of the mixture
fraction is adopted to resolve small scale mixing and chemical reactions in nonpremixed
combustion. The conditionally filtered equation is derived and a priori tests are performed
to validate the closure assumptions and the model performance.
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F1GURE 5. Distribution of conditionally filtered mass fraction of product at the stoichiometric
mixture fraction: (a) filtered DNS data for H1 (b) conditional filtering method for H1 (c) filtered
DNS data for C2 (d) conditional filtering method for C2.

The first-order closure of the reaction rate performs well when the filter width is
less than half the integral length scale in the present cases. The effects of the subgrid
fluctuations become more important as the filter width increases. Accuracy of the first-
order closure is not sensitive to the level of local extinction in contrast to first-order
CMC for RANS. The integrated conditional filtering approach is introduced to reduce
the computational cost and to resolve the low probability problem in the conditional
filtering method. While the assumption of homogenity in the integration direction is
not as good as in the conditional average, the integrated formulation is shown to well
represent the extinction process caused by large scale fluctuations of the scalar dissipation
rate.
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DNS of lean premixed turbulent spherical flames
with a Flamelet Generated Manifold

By R. J. M. Bastiaans, J. A. van Oijenf, S. M. Martin, L. P. H. de Goey{
AND H. Pitsch

1. Motivation and objectives

The present research is concerned with the direct numerical simulation (DNS) and
analysis of turbulent propagation of premixed flame kernels. The simulations are direct
in the sense that the smallest scales of motion are fully resolved, while the chemical
kinetics are solved in advance and parameterized in a table by the method of the flamelet
generated manifolds (FGM) (Van Oijen 2002). The state of the reactions are assumed
to be directly linked to a single progress variable. The conservation equation for this
progress variable is solved using DNS, with the unclosed terms coming from the table.
This allows the use of detailed chemical kinetics without having to solve the individual
species conservation equations.

Turbulent premixed combustion of gaseous fuels is one of the most important energy
conversion processes today, but its physics are not fully understood (e.g. Driscoll 2003).
On the one hand a detailed knowledge is required to understand the behavior of the
conversion process and the efficiency and formation of pollutants. On the other hand this
insight is needed to obtain the parameterizations that are essential in developing accurate
models for large scale simulations. One of the most important processes to understand is
the physics of turbulent flame wrinkling. Flame wrinkling is very important because it
determines both the total flame surface area as well as the local modulation of the mass
burning rate.

Here a lean premixed turbulent expanding flame kernel is studied. Lean premixed
combustion is becoming the method of choice for ground based gas turbine combustors
due to several advantages. The high percentage of air results in complete combustion,
reducing emissions of hydrocarbons and carbon monoxide. The excess air also results in
lower combustion temperatures and as a consequence low emissions of nitrogen oxides.
Therefore, significant research on turbulent premixed combustion has been performed
under lean conditions. Some examples of these investigations are the experimental study
of Shepherd et al. (2002) and the numerical study of Bell et al. (2002). The research of
Shepherd et al. (2002) indicates that even when the smallest turbulent scales are smaller
then the flame thickness there is no significant flame front broadening, i.e. combustion
remains within the thin reaction fronts regime. This result is confirmed by an analysis
of experimental low swirl burner results of De Goey et al. (2004). In the numerical
experiments of Bell et al. (2002), which includes semi-detailed kinetics, it was concluded
that flame wrinkling is the dominant factor for increasing the turbulent flame speed.

From a numerical point of view, the setup of a flame kernel is relatively straight
forward. There are no walls and due to the expansion of the kernel itself, all boundaries
are considered as outflow boundaries. The initial turbulence is decaying, as is the case in

t Combustion Technology, Eindhoven University of Technology, The Netherlands,
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most practical combustion applications. However, not many researchers have used flame
kernels for the study of premixed turbulent combustion. Of particular interest is the
research of Jenkins & Cant (2002), Gashi et al. (2004) and Thévenin (2004). The latter
study is associated with rich flames, which are not addressed here. Jenkins & Cant (2002)
studied the evolution of shape parameters in terms of flame normals and curvatures by
means of DNS combined with single step chemistry. One of their conclusions is that at
low turbulence intensities there is a tendency to favor spherical over cylindrical curvature.
In the study of Gashi et al. (2004), the numerical simulations of Jenkins & Cant (2002)
were extended and supplemented by experimental PLIF observations for both methane
and hydrogen combustion at stoichiometric and lean conditions. The result of the study
is a qualitatively good agreement between the simulations and experiments.

Combustion at lean premixed conditions, like in ground-based gas-turbines, predomi-
nantly takes place in the flamelet and thin-reaction zones regimes of premixed combustion
using Peters (2000) definitions. Consequently, this is the starting point for the develop-
ment of many models. Several flamelet based models have been developed for premixed
combustion in the flamelet regime. The first and most well-known models were derived by
assuming that the flame-front is infinitely thin (Bray & Moss 1977). An efficient flamelet
model is based on the G-equation (Peters 2000). The G-equation is a kinematic equation
which can be used to follow the average position, brush thickness and wrinkling of the
flame front. Peters very recently extended the G-equation model for combustion in the
thin-reaction zones regime. The model is efficient since it is not sensitive to the internal
structure of the turbulent flame brush.

Flame stretch is an important parameter that is recognised to have a determining effect
on the burning velocity in premixed flames. In the past this effect has not been taken into
account in the flamelet approach for turbulent combustion in a satisfying manner. The
laminar burning velocity, which is largely affected by stretch, is an important parameter
for modelling turbulent combustion. Flame stretch is also responsible for the creation of
flame surface area, affecting the consumption rate as well. In the turbulent case, stretch
rates vary significantly in space and time. An expression for the stretch rate is derived
directly from its mass-based definition by De Goey & Ten Thije Boonkkamp (1999),

1 dM
= it 1.1
M dt’ (D

where M is the amount of mass in an arbitrary control volume moving with the flame
velocity:

M= / pdV. (1.2)
V(t)

On the basis of this definition, a model for the influence of stretch and curvature on the
mass burning rate has been developed. In a numerical study by Groot & De Goey (2002),
it was shown that this model, with a slight reformulation, shows good agreement with
calculations for spherically expanding laminar flames. This formulation, for the ratio of
the actual mass burning rate at the inner layer, m;,, relative to the unperturbed mass
burning rate at the inner layer, m? (for unity Lewis numbers), reads

Min

0
in

=1 —ICain, (13)

with the integral Karlovitz number being a function of flame stretch (Eq. 1.1), flame
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The integrals have to be taken over paths normal to the flame and s,, s, and s;, are the
positions at the unburned side, the burned side and the inner layer, respectively. The
flame surface area, o, is related to the flame curvature, k, which is related to the flame
normals, n; on the basis of the progress variable, ),

n; = — s (1.5)
\/63)/637]63//63:3
6”,’ - 1 0o
" o o 0s (1.6)

In turbulent premixed combustion the total fuel consumption is a result of the com-
bined effect of flame surface increase and local modulation of the mass burning rate.
In the present study the latter will be investigated on the basis of Eq. 1.3 and possible
parameterizations thereof, i.e. models for the Karlovitz integral, Eq. 1.4.

2. Methodology

In this section the governing equations and the numerical treatment are presented.
Followed by the construction of the initial fields.

2.1. Numerical method

Freely expanding flames are modelled in a turbulent flow field using DNS. More detailed
information about the DNS program can be found in Bastiaans et al. (2001) and Groot
(2003). The governing equations are,
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The viscosity of the mixture is computed with Sutherland’s law and the ratio of the
thermal conductivity and the heat capacity at constant pressure (A/c,) is assumed to be
a function of temperature only (Smooke & Giovangigli 1991). The species heat capacities
are tabulated in polynomial form. Unity Lewis numbers are assumed for all species in
order to prevent differential diffusion effects from obscuring the direct effects of stretch
and curvature on the mass burning rate.

The equations are in fully compressible form and are solved in a three-dimensional
cubic computational domain with a length of 12 mm and 254 grid points uniformly
distributed in each direction. This gives a mesh size of approximately 0.0472 mm in each
direction. For the spatial discretization of second derivatives, the sixth order accurate
compact finite difference method of Lele (1992) is used. First order derivatives connected
to advection are treated by a compact fifth order finite difference method, developed by
De Lange (2004). The time integration is performed explicitly with a compact storage
third-order Runge-Kutta method. A time step of order 1078 is used to satisfy the stability
criteria.

The boundary conditions are modelled with the Navier-Stokes Characteristic Boundary
Conditions (NSCBC) of Poinsot & Lele (1992). The initial flame kernels are expanding
at atmospheric conditions, which means that all boundaries of the cubic computational
domain are modelled as outlet boundaries to prevent pressure build-up in the domain.
Therefore, partially-reflecting outlet boundaries are required, imposing a fixed pressure
far away.

To make the DNS computations affordable, the FGM method of Van Oijen (2002)
is used to describe the reaction kinetics. FGM can be considered a combination of the
flamelet approach and the intrinsic low-dimensional manifold (ILDM) method of Maas
& Pope (1992) and is similar to the Flame Prolongation of ILDM (FPI) introduced by
Gicquel et al. (2000). FGM is applied similarly to ILDM. However, the thermo-chemical
data-base is not generated by applying the usual steady-state relations, but by solving a
set of 1D convection-diffusion-reaction equations describing the internal flamelet struc-
ture. The main advantage of FGM is that diffusion processes, which are important near
the interface between the preheat zone and the reaction layer, are taken into account.
This leads to a very accurate method for (partially) premixed flames that uses fewer con-
trolling variables than ILDM. The manifold used in this paper is based on the GRI3.0
kinetic mechanism with 53 species and 325 reversible reactions (Smith et al. 1999).

The mass fraction of carbon dioxide, which is monotonically increasing, is used as
the single controlling variable (progress variable). Since pressure, enthalpy and element
mass fractions are constant in these flames, they are not needed as additional controlling
variables. A large portion of the terms and parameters in the governing equations, Eq.
2.1, are given by the manifold. These items include the source term for the progress
variable, the source term for the temperature equation, which is given by all the terms
in the summation over species (the large term in square brackets), the viscosity, conduc-
tivity, specific gas constant, the heat capacity at constant volume and the ratio of heat
capacities.

2.2. Initial conditions

The initial conditions are a laminar spherical flame superimposed on a turbulent field.
There is no forcing in the simulation, so the turbulence will decay in time. In order to
select a physical condition to be considered one normally refers to a certain region of
the premixed combustion regime diagram given by (Peters 2000) among others. Given a
certain chemistry, the regime is given by the applied turbulence in terms of the amplitude
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FIGURE 1. Burning velocity and flame gradient thickness from simulation of laminar methane
air combustion as function of equivalence ratio based on GRI3.0 at 300 K and 1.013250-10°
Pa. Left: Burning velocity using full GRI3.0 kinetics (drawn line), mixture average Lewis num-
bers approximation (dashed) and Le; = 1 approximation (dash-dotted). Right: Flame gradient
thickness, full GRI3.0 (drawn) and Le; = 1 approximation (dash-dotted).

of the velocity fluctuations and the mean turbulent coherence length given by the Taylor
integral scale. The procedure to initialize the turbulence starts with drawing random
numbers for a stream function. This field is subsequently filtered multiple times by means
of a top-hat filter. This results in a smooth field in which derivatives can be approximated
with sufficient accuracy and a certain Taylor scale depending on the number of filter
operations. It must be remarked that the number of filter operations generally is of the
order of 100, so that the effective filter is an accurate approximation of a Gaussian.
In order to keep disturbances away from the domain boundaries, the resulting field is
windowed with a tanh function, decreasing from 1 to 0 at a diameter of 0.8 times the
domain size and with a width of 0.05 times the domain size. Subsequently, derivatives are
taken from the stream function to obtain the velocity components of a solenoidal field.

The chemistry is chosen due to the large interest in the power industry in lean premixed
combustion engines and there is detailed knowledge of its chemical kinetics. Therefore
premixed combustion of a methane/air mixture is used, with an equivalence ratio of
¢ = 0.7. An additional advantage for lean methane chemistry is that the flame speed and
the flame thickness are equal for the full GRI3.0 kinetics, and for the case in which these
kinetics are used with a Le; = 1 approximation (as can be observed from simulations
using CHEM1D (2002), displayed in figure 1). We will use the Le; = 1 approximation in
the present study. The advantage is that the results will not be obscured by differential
diffusion effects.

Our objective is to analyse the flame dynamics in a well defined and sufficiently resolved
case. The most interesting region in the regime diagram with respect to the objective
of the present study is the transition from the thin reaction zones regime towards the
distributed reactions zone regime. It is expected that somewhere in this region the FGM
method (as used in the present mode with only one progress variable, based on the ratio
of the C'O2 mass fraction and its equilibrium value) loses its validity. In this study we will
restrict ourselves to conditions where the use of just one progress variable is still a good
assumption. Additionally, the simulations are constrained by geometrical and numerical
conditions.
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FIGURE 2. Case C1, left: Vorticity contours (positive and negative values indicated by solid
and dashed lines, respectively) and progress variable (thick lines, values 0.2, 0.5, 0.8), right:
Correlation of the actual mass burning rate with the basic model (result of 52000 flamelets
found in the domain).

Since the domain size depends on the starting field of the controlling variable (progress
variable), a relevant initial flame kernel must be chosen. For this reason and for compar-
ison of turbulent results with a laminar undisturbed flame development, the evolution of
the initial laminar spherical flame kernel is calculated with detailed chemistry as well.
Again, the CHEM1D (2002) code was used, but now using spherical coordinates. The
starting condition is a flat adiabatic flame at the same conditions, which is converted
geometrically to a spherical flame with a very small radius. It is assumed that this kernel
adjusts itself in time to a sort of self-similar laminar flame kernel.

3. Results

In this section the test cases are presented, followed by the flamelet analysis. The
section closes with the presentation of results.

The first simulation, denoted C1, is a lean case with an equivalence ratio of ¢ = 0.7,
domain size of 12 mm, an initial flame kernel radius of approximately 2.9 mm, turbulent
fluctuations of u' = 0.4 m/s and a turbulence length scale of £,=1.15 mm. In order to
allow for very mild perturbations, initially we study the results at a time equal to 0.0267,
with 7 = £, /u’ = 2.9ms, taken from the start of the simulation. The time of growth of
the laminar flame kernel to the initial DNS size was about 5 ms. The burning velocity
of a flat unstretched flame with respect to the unburnt mixture is equal to s§ = 18.75
cm/s and the corresponding mass burning rate is m® = 0.213 kg/m?2s. The progress
variable is taken to be the carbon dioxide mass fraction, normalized with the maximum
adiabatic value. At the left side of figure 2 is a cross section of the field. The contours
of the progress variable are deformed only very mildly. It is observed that the scale of
the vorticity patches are larger then the integral flame thickness. For this field the mass
burning rate is analyzed as a reference case.

Additional analyses are performed in order to assess the basic model (Eq. 1.4) under
varying physical conditions. The test cases are listed in table 1. In case C2, the effect of
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Case ¢ o' [m/s] & [mm] & [mm] L [mm] rin; [mm] grid Rey =u'l/sdd; tu'/t;

Cl 0.7 040 1.15 0.614 12 2.9 2543 4.0 0.026
C2 0.7 040 1.15 0.614 12 2.9 1253 4.0 0.026
C3 1.0 0.60 0.89 0.475 12 2.9 2543 4.0 0.026
C4 0.7 0.70 0.77 0.614 20 3.9 2543 4.7 0.026
Cs 0.7 131 0.94 0.614 12 2.9 2543 10.7 0.026
Cé 0.7 1.30 0.66 0.614 12 2.9 2543 7.5 0.026

TABLE 1. Physical properties correspondig to the different simulations

grid resolution is investigated. It is assumed that the FGM method is valid in the flamelet
regime if the progress variable is approximated with enough accuracy. Since all lengths
scales of the gradients of primary variables (i.e. the variables that are solved in the present
DNS calcualations) are of the same order, this will yield satisfactory solutions. In order
to assess the influence of the chemistry a stoichiometric case, C3, is selected, in which the
same ratio of the turbulent velocity fluctuations compared to the laminar flame speed,
and the turbulent integral length scale compared to the initial flame thickness as used
for cases C1 and C2. For the stoichiometric case at unity Lewis numbers the burning
velocity is s8¢ = 28.17 ecm/s and the corresponding mass burning rate is m® = 0.316
kg/m?s. An additional case is given by the simulation of an increased initial flame kernel
in a larger domain, C4. Here also the effective resolution is decreased. In addition, cases
are chosen with increased velocity fluctuations and decreased length scales, cases C5 and
C6, respectively.
In the analysis, the stretch rate defined by,

0
pK = o2, (psLni), (3.1)
is evaluated by using the relation for the local burning velocity s,
(2 (:22) )
T; eCp Ox; p

sp = 207 AL : (3.2)

[eAY

Bz,-

which is a consequence of the combination of the conservation equation for ) with the
kinematic equation for ). The latter defines the flame speed u; and then the relation
for the flame velocity, u;s = u; + spn;, can be used to arrive at Eq. 3.2.

Now the actual mass burning rate can be compared to model-values. This is performed
by looking for points in the domain that are close to the inner layer and interpolate from
there in the direction of positive and negative gradient of the progress variable, with steps
of 1/20 times the gridsize. All relevant variables are interpolated over these flamelets and
these flamelets are analysed to determine the burning velocity of Eq. 3.2 and the model
of the mass burning rate given by Eq. 1.4. For the present simulations these analyses lead
to lots of starting points (e.g. for case C1: 52000) and thus resulting flamelets. For case
C1 the correlation is depicted on the right side of figure 2. This shows that the model is a
relatively accurate description of the actual mass burning rate. Deviations of the actual
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Case C1 C2 C3 C4 Ch C6

Mean 0.0072 0.0081 0.0075 0.0091 0.0107 0.0094
RMS 0.0215 0.0202 0.0216 0.0236 0.0336 0.0280

TABLE 2. Differences of the mass burning rate with the basic model.

mass burning rate compared to the model (Eq. 1.4) are given in table 2 for all six cases.
It is seen that the mean error for all cases is about 0.01 or less, with a root mean square
value of 0.02 to 0.03 (without normalization). It can be concluded that the model is a
good description for all the present cases. Moreover, the grid coarsening shows no real
deterioration, indicating that all cases are sufficiently resolved.

Starting from this point approximations to Eq. 1.4 can be considered. First, one can
consider the case in which the surface area is taken to be constant, ¢ = oy, as used
frequently in the literature,

Sb Sb
1
Kal, := — /pKyds—/pde . (3.3)
in

An improved model can be constructed by assuming that the curvature is not a function
of the distance s, but that it remains constant equal to the inner layer value k¥ = k;,. By
integrating Eq. 1.6 this yields for the surface

o = exp (—kin(5 — Sin))- (3.4)
A third approximation is that the iso-planes of the progress variable are concentric, either
cylindrical or spherical yielding
o £
o= (75/’“‘“ 3) : (3.5)
&/Kin

in which £ takes the value 2 for spherical curvature and 1 for cylindrical curvature. This
has to be limited for distances s beyond the concentric origin, s > £/kin, at which o = 0.

The result of the approximations are given in table 3 for all cases. It is observed that the
constant flame surface conjecture gives rise to relatively large error. There is a systematic
over-prediction of about 0.05 (without normalization) of the mass burning rate with this
model and the fluctuations are of the same order of magnitude. The other approximations
give much better results. For the mean differences the spherical approximation, & = 2,
is superior compared to the cylindrical model, £ = 1, and for most cases also compared
to the constant curvature model. However, this is not really substantiated when looking
at the accompanying fluctuations. For the better resolved cases, C1 and C3, the mean
difference is best predicted by the & = 2 model, but again the accompanying fluctuations
are much larger than the model deviation. This suggests that it is not a real improvement.
With respect to the fluctuations it seems that constant curvature gives the smallest
deviations. Additionally, it can be observed that the constant curvature estimation gives
slight under-predictions, whereas the concentric cases give systematic increased values of
the mass burning rate. Moreover it can be seen that the stoichiometric case (C3) gives
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Case C1 C2 C3 C4 C5 C6

0 = Oin

Mean -0.0537 -0.0519 -0.0340 -0.0496 -0.0653 -0.0810
RMS 0.0552 0.0473 0.0373 0.0641 0.0772 0.1004

K = Kin

Mean 0.0062 0.0055 0.0029 0.0026 0.0082 0.0079
RMS 0.0103 0.0085 0.0055 0.0173 0.0186 0.0338

E=2

Mean -0.0011 -0.0006 -0.0007 -0.0075 -0.0037 -0.0141
RMS 0.0114 0.0101 0.0074 0.0313 0.0224 0.0540

£=1

Mean -0.0059 -0.0050 -0.0032 -0.0115 -0.0101 -0.0219
RMS 0.0169 0.0142 0.0098 0.0333 0.0281 0.0556

TABLE 3. Differences of the mass burning rate determined by the basic model compared to the
approximations.

the smallest deviations for any of the present approximations. This indicates that the
choice of progress variable for the lean case might not be the best choice.

For closer inspection of all realizations in the field, case C6 is chosen in which the
deviations are largest. Correlation plots are shown in figure 3. For this case the basic
model does not deviate significantly from the results in figure 2, the only difference being
that the range of values is extended more to the origin of the plot. Moreover some features,
as indicated above, are clearly reflected like the under-prediction of the constant surface
case. Furthermore the predictions of the concentric cases are less robust compared to
the constant curvature model. The latter however gives deviations at small mass burning
rates. This is also observed, to a lesser degree, in the concentric spherical approximation.
Near the origin the cylindrical model seems to perform better. This is in agreement
with observations of Jenkins & Cant (2002), who found that at higher turbulence levels,
curvature in premixed turbulent combustion of flame kernels tends to cylindrical modes
of deformation of the flame front.

It is obvious that all models do not fit to the true values because no local information
on the flame geometry is taken into account in the approximations. If local geometric
information is taken into account a much better agreement would be possible and will
be a topic of further research. At larger times in the evolution, e.g. case C6, it was found
that the basic model Eq. 1.4, gives good correlations (at ¢ = 0.0877 mean deviation 0.08,
rms values of 0.24), see figure 4, whereas all approximations are starting to deteriorate
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severely. In this case the curvatures have large values, the associated values of radii are
within the flame thickness, ¢, as shown in the figure (at the right).

4. Future plans

From the previous results it can be concluded that the method of FGM in combination
with DNS calculations looks very encouraging. It appears that the FGM is a promising
technique to reduce the chemistry and obtain accurate results for the flow, thermodynam-
ics and species. However, apart from a validation in terms of laminar burning velocity, a
direct validation is not present for turbulent cases. With respect to this, more validation
is needed and the strategy for this will be twofold. By applying a suitable kinetics model
with a limited number of species, a DNS can be conducted. This system can be reduced
and validated directly against the results of the detailed chemistry calculations. A sec-
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FIGURE 4. Results of case C6 at time ¢t = 0.0877, left: correlation of the actual mass burning
rate with the basic model, right: PDF of inner layer curvatures.

ond method is to increase the dimension of the manifold. It must be studied how many
controlling variables are required for a certain accuracy of the predictions. This again
can be performed in the framework of the previously mentioned full chemistry DNS.
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Numerical simulations of spray flames

By R. Kurose, O. Desjardins, M. Nakamuraf,
F. Akamatsuf AND H. Pitsch

1. Motivation and objectives

Spray combustion is utilized in a number of engineering applications such as energy
conversion and propulsion devices. It is, therefore, necessary to precisely predict the
spray combustion behavior in designing and operating the equipment. However, since
spray combustion is a complex phenomenon in which dispersion of the liquid fuel droplets,
evaporation, and chemical reaction of the fuel vapor with oxidizer take place interactively
at the same time, the underlying physics governing these processes has not been well
understood.

Direct numerical simulations (DNS) directly solve conservation equations for the carrier
gaseous phase and Lagrangian equations for dispersed droplet dynamics and can be used
for discussing the detailed spray combustion mechanism. However, few of such studies
have been done even for low Reynolds numbers and simple geometries, because such
simulations can be quite expensive.

Likewise, although large-eddy simulations (LES) are becoming a standard tool to study
and predict single-phase gaseous combustion fields (e.g., Huang et al. 2003; Pierce & Moin
2004; Selle et al. 2004), the number of LES studies of two-phase combustion fields is very
limited. Recently, Kurose & Makino (2003) applied LES to a turbulent jet flame of solid
fuel and investigated the interactions among the dispersion, evaporation and combustion
of solid-fuel particles. Ham et al. (2003) also performed LES of a spray combustion field
in a realistic gas turbine combustor. The small number of papers on LES of two-phase
combustion is attributed not only to the high computational cost, but also to the lack of
experimental data for the validation.

In LES modeling of gaseous fuel combustion, the widely-used flamelet models (Peters
1984, 2000) have been extensively validated in different formulations, such as the steady-
flamelet model (Cook et al. 1997), the unsteady-flamelet models (Pitsch & Steiner 2000;
Pitsch 2002), and the flamelet/progress-variable approach (Pierce & Moin 2004). How-
ever, for spray combustion, the mixture fraction, which characterizes the mixing field,
is not a conserved scalar anymore. Evaporation changes the mixing field, and especially
the scalar dissipation rate. A proper formulation accounting for all the effects has not
yet been developed. In addition, the validity of the standard approach for representing a
group of droplets so called parcel to reduce the computational cost should be carefully
studied, since the use of the parcels may deteriorate the numerical accuracy. In fact, it
was demonstrated that the spray combustion behavior varies with the number of parcels
(Nakamura et al. 2004), and it is expected that this phenomenon can be explained in
terms of the droplet group combustion theory (Chiu & Liu 1977; Chiu et al. 1982).

The purpose of this work is twofold. First, the spray combustion behavior is studied
by a two-dimensional DNS of spray flames formed in a laminar counterflow. The droplet
group combustion theory (Chiu & Liu 1977; Chiu et al. 1982) is discussed in detail. The
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second aim of this work is to apply LES with the flamelet/progress-variable approach
to a spray jet flame and validate the technique. Qualitative results are presented and
compared with experimental observations.

2. Two-dimensional direct numerical simulation of spray flames stabilized in a
laminar counterflow

2.1. Field description and numerical method

The computational setup for DNS of a spray flame in a laminar counter flow is designed
to match the experiment of Hwang et al. (2000), and the numerical details are described
in Nakamura et al. (2004). The computational domain analyzed in this study is shown
in Figure 1. The dimensions are 20 mm x 40 mm. There are two burner ports with the
widths of 20 mm on both the upper and lower sides, and the separation distance between
the ports is 20 mm. The origin of the calculation domain is located at the center of the
upper burner port. From the upper port of -10 < y < 10 mm, atmospheric air (T' = 300K,
P = 0.1013 MPa, and oxygen mass fraction Yp, = 0.2357) is issued at a velocity of 0.4
m/s. From the lower port, a premixture of atmospheric air and n-decane (C19Ha2) vapor
(equivalence ratio, ¢ = 0.6) is issued in the region of -3 < y < 3 mm, and atmospheric
air is issued in the region of -10 < y < -3 mm and 3 < y < 10 mm at the velocity of
0.4 m/s. The stretch ratio of the laminar counterflow is 40 1/s. The n-decane (C19Haz2)
spray is injected from the upper port in the range of -3 < y < 3 mm at the velocity of
0.4 m/s.

Gaseous species considered in the calculations are Oz, No, CO2, H20, and CioHaa,
and their transport properties and thermodynamic data are obtained from CHEMKIN
(Kee et al. 1986, 1989). Properties of liquid n-decane are obtained from Reid et al.
(1977). The governing equations considered for the gaseous phase (mass, momentum,
energy and species mass) are discretized and solved by the finite volume method using
the SIMPLE algorithm (Patankar 1980). Dispersed droplets are tracked in a Lagrangian
manner. It is assumed that the density of the droplets is much larger than that of the
continuous phase such that only drag and gravity are significant. The effect of fluid shear
on fluid force acting on the droplets (Saffman 1965; Kurose & Komori 1999), droplet
breakup and collision, and dense particulate effects (Ham et al. 2003; Apte et al. 2003)
are neglected. It is well known that the drag is reduced by evaporation. This effect is
taken into account using the method by Kurose et al. (2003). Mass, heat and momentum
interchanges between the carrier gas and dispersed droplet phases are calculated by
the PSI-Cell model (Crowe et al. 1977). For the droplet evaporation, a non-equilibrium
Langmuir-Knudsen evaporation model is employed (Miller & Bellan 1999).

Although the time-averaged equivalence ratio of the spray, ¢;, was 0.42 in the ex-
periment (Hwang et al. 2000; Nakamura et al. 2004), this value was considered to vary
periodically with time due to the unsteadiness of the fuel injection system. Hence, the
computations are performed for four different spray equivalence ratios of ¢; = 0.21, 0.42,
0.84 and 1.26. The initial droplet size distribution is the same as that obtained by the
PDA (phase Dopper anemometer) measurement (Figure 2), and the initial position of
each droplet is determined randomly. The calculation domain (0 < z < 20 mm, -20 <
y < 20 mm) is divided into 200 x 400 equally spaced computational cells in z and y
directions, respectively, which generates the actual control volume size of 100 yum x 100
pm. The calculation time step is set at 0.1 ms.
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FI1GURE 1. Computational domain for DNS of  FIGURE 2. Initial droplet size distribution.
spray flames in a laminar counterflow.

2.2. Results and discussion

Figure 3 shows the time-averaged axial (x direction) profiles of gaseous temperature, T,
and axial velocity, u, respectively (at y = 0). The solid, dashed, dotted and dash-doted
lines show the results of spray flames for ¢; = 0.21, 0.42, 0.84 and 1.26, respectively. In
general, as ¢; increases, the high T region expands, which is expected because the heat
of reaction of the added spray increases with increasing ¢;. However, in the upper part
of the high T region of 0.3 < z/L, < 0.55 (L, is the separation difference between the
ports), the value of T' tends to decrease for high spray equivalence ratios of ¢; = 0.84
and 1.26. Tt is also observed that, in accordance with the T profile, the difference in u
between ¢; = 0.84 and 1.26 is less for the upper region (2/L, = 0.4) than that for the
lower region (z/L, ~ 0.75).

To investigate the spray combustion behavior in detail and clarify the reason why
the gaseous temperature decreases for high spray equivalence ratio in the region of 0.3
< z/L, < 0.55, the instantaneous combustion fields for ¢, = 0.21, 0.42, 0.84 and 1.26
are shown in Figure 4. Gas phase temperature, T, combustion reaction rate, Rp, and
gas phase equivalence ratio, ¢, are illustrated, and the droplet location is superimposed
on each figure. The high combustion reaction rate around z/L, = 0.75 in the figure
of Rr (indicated by arrow F) is due to the flame of the premixed gases supplied from
the lower port. The photograph of the flame obtained from the experiment, which, as
will be explained later, is considered to correspond to the adjacent numerical condition,
is also shown (Nakamura et al. 2004). It is found that, with increasing ¢;, the number
of droplet entering the high temperature region increases, and the combustion behavior
changes drastically. That is, while the droplets for low spray equivalence ratio of ¢; =
0.21 monotonically evaporate and burn individually, those for higher spray equivalence
ratio experience two different combustion zones, as shown in the distributions of Rr and
¢. Firstly, for the high spray-equivalence-ratio cases of ¢; = 0.84 and 1.26, the high Rp
zone appears around the front surface of the high T region at z/L, = 0.35 (indicated by
arrow (). Although the droplets continuously evaporate even in the upstream region of
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FIGURE 3. Time-averaged axial profiles of gaseous temperature and axial velocity: (a) tempera-
ture, T'; (b) axial velocity, u; solid line, ¢; = 0.21; dashed line, ¢; = 0.42; dotted line, ¢; = 0.84;
dash-dotted line, ¢; = 1.26; dash-double-dotted line, gaseous flame.

this zone (see the figure of ¢), combustion does not occur until the fuel vapor reaches this
zone. It can be said that a “premixed-like combustion” takes place in this zone, since
the fuel vapor mixes with air before reaction starts. Subsequently, in the downstream
region of 0.35 < z/L, < 0.5 (between arrows C and E), there appears a “diffusion-
like combustion” zone, where the evaporation and combustion of the residual droplets
penetrating the “premixed-like combustion” zone takes place at the same time.

Furthermore, this “diffusion-like combustion” is apparently divided into two different
combustion types. The residual droplets in the high T region evaporate and burn indi-
vidually in the upper region (0.35 < /L, < 0.4 (between arrows C' and D)), but burn as
clusters of some droplets in the lower region (0.4 < z/L, < 0.5 (between arrows D and
E)). The difference in the combustion type can be explained by Figure 5, which shows the
instantaneous axial profiles of gaseous temperature, T', mass fraction of O2 and CigHaz,
Yo, and Y¢,, H,,, and combustion reaction rate, Rr, on the A and B section in Figure 4.
The oxygen is abundant in the upper region of 0.35 < z/L, < 0.4, but almost zero in the
lower region of 0.4 < z/L, < 0.5. Therefore, the fuel vapor generated in the high T' region
rapidly reacts with the oxygen and is consumed in the former condition, whereas it is
not consumed in the latter condition. Consequently, the high fuel vapor lumps containing
some droplets burn from the outer surface, where the oxygen is abundant.

This phenomenon, in which the droplets burn as a cluster, is known as droplet group
combustion. According to Chiu & Liu (1977) and Chiu et al. (1982), there are four modes
in spray flames, i.e., (1) single droplet combustion mode, in which droplets burn as a single
droplet, (2) internal group combustion mode, in which group flames appear inside the
droplet group (droplets inside the group flame only just evaporate and droplets outside
the group flame burn as a single droplet), (3) external group combustion mode, in which
the group flame encloses the whole droplet group, and (4) external sheath combustion
mode, in which a non-evaporation region (low temperature region) is found inside the
evaporation region in the droplet group. These modes change from the single droplet
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combustion mode to the external sheath combustion mode, as the group combustion
number, G, increases.

In Figure 4, for the highest spray-equivalence-ratio cases of ¢; = 1.26, low temperature
lumps containing some droplets appear (see arrow G in the temperature profile in Figure
5). This is becasue that this combustion belongs to the external sheath combustion mode.
The decrease of the gaseous temperature for high spray equivalence ratios of ¢; = 0.84
and 1.26 in the upper part of the high T region of 0.3 < z/L, < 0.55, as shown before, is
considered to be caused by the group combustion behavior. The reason why the gaseous
temperature decreases in the droplet group is due to the heat exchange between droplets
and gaseous phase, which is referred to as the evaporative cooling effect. The temperature
of droplets is much lower than that of the gaseous phase. Moreover, as the evaporation
of droplets proceeds, the heat of vaporization reduces the droplet temperature. This low
gaseous temperature leads to the low reaction rates. Thus, droplet group combustion,
which tends to appear in the regions of high droplet number density and low oxygen
concentration, delays the combustion reactions.

As mentioned earlier, although the time-averaged equivalence ratio of the spray, ¢,
was 0.42 in the experiment, this value was considered to vary with time. Hence, the
flame photograph, which seems to correspond to each numerical condition, is selected in
Figure 4. In the photographs, blue and luminous flames indicate premixed and diffusion
combustion (the flames are shown in white and the luminous flames are indicated by
arrows H), respectively, since the lumination originates from soot radiation, which is
generated under very rich conditions, such as those encountered in diffusion flames. It
seems that the computed results generally agree with the experimental observations. For
the high spray equivalence ratios of ¢; = 0.84 and 1.26, the sizes and positions of the
computed group combustion flames correspond to those of the luminous flames.
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3. Large-eddy simulation of a spray jet flame
3.1. Field description and numerical method

The spray jet flame considered here has first been experimentally investigated by Nakabe
et al. (1988, 1991, 1994) and the detailed flame behavior has been studied by Akamatsu
et al. (1996, 1997) using several kinds of optical measurement techniques. The spray jet
flame is a non-swirling piloted jet flame stabilized in a two-phase stream with minimum
slip between gas and droplets, for which a long mixing length from a spray atomizer
to burner outlet is given (Figure 6). It is called premixed-spray jet flame. A liquid fuel
atomized by an air-blast atomizer placed upstream is issued in air from the central port
of the annular pilot burner. This premixed-spray jet flame has the advantage that com-
plicated phenomena such as dense particle flow effects and spray breakup, collision, and
deformation (e.g., Ham et al. 2003; Apte et al. 2003) can be neglected in the computa-
tions.

The computations performed in this study are designed to match the experimental
setup (Akamatsu et al. 1996, 1997). The computational domain is shown in Figure 7.
The computational domain normalized by the burner radius (Rs) is -1 <z <10,0<r
< 6 and 0 < € < 27 in the axial, radius and azimuthal directions (R; = 26.35 mm, Ry
= 27.35 mm, R3 = 28.35 mm, Ry = 29.35 mm, R5; = 40.45 mm). In the experiments,
kerosene is used as the liquid fuel, hydrogen is supplied from the annular pilot burner,
and air is provided from the surrounding annulus to suppress the expansion of the stream
lines. In this preliminary test, however, n-heptane is assumed as the liquid fuel, and the
annular pilot burner to ignite and stabilize the spray flame is modeled by a stream of
hot combustion products. The nominal bulk velocity of the central and surrounding air
is 5.5 m/s.
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The numerical procedure is essentially the same as that of Pierce and Moin (2001).
A structured grid in cylindrical coordinates is used. The primary breakup of the lig-
uid jet is not computed. Instead, the initial droplet size distribution obtained by the
PDA measurement is used. The simplified model by Oefelein (1997) is used for droplet
evaporation.

The size of the grid is 272 x 128 x 96 nodes in the axial, radial, and azimuthal
directions, respectively, and the grid is refined near the solid boundaries. The parcels
representing about 20 droplets are tracked, which yields around 0.7 million parcels in the
domain.

3.2. Results and discussion

Figures 8 and 9 show the instantaneous distributions of mixture fraction and product
mass fraction together with the droplet distribution. Only mixture fractions and product
mass fractions larger than 0.05 are shown. The spray jet flame is found to be stabilized
by the product mass fraction issued from the annular pilot burner. For both the mix-
ture fraction and product mass fraction, high concentration regions are observed around
the spray jet, which means that combustion proceeds from the outside of the spray jet.
Although not apparent only from these figures, in the upstream region near the burner,
most of the droplets evaporate on the edge of the spray jet and hardly penetrate into
the outer high product mass fraction area. In the downstream region of the spray jet,
on the other hand, some droplets are found to separate from the main spray jet and
move into the high product mass fraction area as clusters, as shown in Figure 10. A
similar behavior was observed in the previous experiment by Tsushima et al. (see Fig-
ure 11). The numerical results also illustrate that, for the droplet cluster in the high
product mass fraction area, the high temperature droplets tend to cover the low temper-
ature droplets. This trend seems to correspond to the earlier described mode (3) or (4) ,
which suggests that the present LES is capable of capturing the droplet group combus-
tion behavior. However, quantitative validation using an improved droplet evaporation
model and chemical mechanism for a better kerosene surrogate would be essential to fully
validate the technique.

4. Conclusions and future work

This paper presented the detailed behavior of spray flames by analysing 2-D DNS data
for burning liquid fuel spray in a laminar counterflow. The droplet group combustion
model (Chiu & Liu 1977) was explicitly demonstrated. It was also verified that the
droplet group combustion tends to appear in the region of high droplet number density
and low oxygen concentration and that it delays evaporation and combustion of the fuel
droplets.

LES with the flamelet /progress-variable approach was applied to a spray jet flame, and
preliminary test case results were shown. The spray jet flame was stabilized by supplying
the progress variable from the annular pilot burner, and corresponding the experimental
observations, the group combustion-like behavior was observed.

Future work will focus on the validation study for the LES technique of spray jet
flames. First of all, an improved droplet evaporation model and a chemical mechanism
for a kerosene surrogate will be implemented in the LES code. Our detailed experimental
data for the premixed-spray jet flame (e.g. gaseous velocity, temperature, main species
concentrations, droplet size, and droplet number density) will allow us to understand
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FIGURE 9. Instantaneous distributions of product mass fraction and droplets.

the accuracy of the existing models associated with droplet evaporation and combustion,
and to develop improved models.
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FIGURE 11. Droplet distribution obtained by experiment (Tsushima et al. 1998).
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Frequency integrated radiation models for
absorbing and scattering media

By J.F. Ripoll AND A.A. Wrayt

1. Motivation and objectives

The objective of this work is to contribute to the simplification of existing radiation
models used in complex emitting, absorbing, scattering media. The application in view
is the the computation of flows occuring in such complex media, such as certain stellar
interiors or combusting gases. In these problems, especially when scattering is present,
the complexity of the radiative transfer leads to a high numerical cost, which is often
avoided by simply neglecting it. This complexity lies partly in the strong dependence of
the spectral coefficients on frequency (Modest 2003; Siegel & Howell 2001). Models are
then needed to capture the effects of the radiation when one cannot afford to directly
solve for it. In this work, the frequency dependence will be modeled and integrated
out in order to retain only the average effects. A frequency-integrated radiative transfer
equation (RTE) will be derived. In it, the absorption and scattering will be treated
through the use of mean coefficients (Siegel & Howell 2001 and references in it). To
obtain these coefficients, it is needed to assume a form for the intensity, which we take
to be the maximum entropy closure (Minerbo 1978). Such an intensity is a function of
the macroscopic radiative energy and flux and accounts for the variations of radiation
in the considered medium. Models for mean absorption, mean isotropic scattering, and
mean non-isotropic scattering coefficients will be proposed in the case where the various
spectral coefficients can be written as polynomial functions of the frequency. Some of
these models have already been derived and tested for non-scattering media in (Ripoll
et al. 2001; Ripoll & Wray 2004a). They are here extended to the general case of emitting,
absorbing, and scattering media. A direct application will be given for soot, which follows
a linear frequency law for absorption; isotropic and incoming scattering spectral models
are also here roughly approximated by a linear law. Macroscopic radiation models will also
be derived with absorption and scattering coefficients since they constitute an alternative
to the use of the RTE in cases where this equation is too costly to solve, as in many
coupled problems. Finally, we believe another application of these models could be for
radiating flows occuring in dusty media.

2. A frequency integrated RTE with mean coefficients
2.1. Generalities
The radiative transfer equation (RTE) describes the evolution of the radiative intensity
within a emitting, absorbing, and scattering medium and is given by
o*(v)

A

%atprn.w — 0 () B(v, T) =0 () — 0™ () [+ / Q)8 (v, 2 = Q)X (2.1)

t NASA Ames Research Center
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where the intensity I = I(t,r,Q,v) is a function of the time ¢, the position r, the direction
of propagation Q, and the frequency v. Here ¢ is the velocity of light, o%(v) is the
spectral absorption coefficient, 0?*(v) the spectral isotropic scattering coefficient, o®(v)
the spectral incoming scattering coefficient, and Q' the original direction of radiation
scattered into 2. The Planck radiative intensity B describes the isotropic emission of the
medium at the frequency v and temperature T by

2hv? hv -1
T)= — 1 2.2
B(”’ ) C [eXp( kT) ] ( )
where h is the Planck constant, k the Boltzmann constant, and v the frequency. We

assume in this paper that the phase function of scattering ®(v, 2 — ') can be expressed
as

(v, Q= Q) =al)+80W)Q-Q +v)(2- Q) +9)5(Q - Q) (2.3)
where 0(-) is the Dirac delta function, and the coefficients, «, 3, v, and 7 are all in general
functions of the frequency. They must be defined such that the following normalization
property holds:

@) / 3(v, Q2 - Q)dQ = 0% (v). (2.4)
47 Q
2.2. Derivation of the RTE with mean coefficients

By integrating the RTE over frequency and introducing the quantity{ J(¢,r,€2)
= fooo I(t,r,Q,v)dv = (I),, we obtain

%atJ 4 QYT = (0B, T))w — (0 W)])y — {o° ()I)s

o®(v)
A7

We now introduce the following mean absorption and scattering coefficients:
vy _ (P WBE T,

+ / I(2)3(v, Q2 — Q')dD'),. (2.5)

r (B, T)), (26)

U (1, Q) = <ga<(I,,()t Iit, ;;, syz),;/)),, @7)
R 28)
op(t,r) = <US(V<)1(S:, ig r u)()z,l,,n:»m’ (2.9)
o3t e, Q) = <a*’(v<)£<_vs);2[ ( tmgry)s;:))n 2.10)
P a0 I 0 R (RN 1)

(- QN)2I(t,r, Q' v)),q
where the superscripts e, a, is, and s designate respectively emission, absorption, isotropic
scattering, and scattering. We define x(v) = o*(v)n(v)/(4wc®®(v)). Using these defini-
tions and without any assumptions other than the form of the phase function (2.3), the

1 We will denote the integration of a function f over the variables X, Y, Z as (f)x,v,z
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frequency-integrated RTE becomes
1 i 1
ZOJ+QVJ = "4LaT BT—0p T+ | J@) ok +orQ- Q' oh(2-2)) Y
C T Q

(2.12)
where the constant a = 87°k*/(15h%c?). It should be noted that the mean scattering
coefficients in the integral do not depend on £2, unlike 0% and o',

As a simplifying approximation, we now eliminate the Q dependence of the two mean
coefficients 0% and o%. This can be done by simply approximating the numerator and
denominator in (2.7) and (2.8) by their Q-integrated forms. Alternately, we integrate
2.12 indefinitely over 2, using the polar variables y = cos and ¢, to obtain

_oe" J{oe®*W)I(t,r,Q,v)), dudp
/8tJ+Q VI ddg = “L-aT* g - Tl O o /Jd d

f(a WV)[1-xW)]I(tr,Q,v)), dudd
- [({I(t,r,Q,v)), dudd /Jd dé

+/4i J() (0% + b - Q' + 04(Q - Q)2) dQ dp dg
™ Joy
(2.13)

We now replace the indefinite integrals in the numerator and denominator of the second
and third terms on the rhs of (2.13) with definite integrals over the full 47 of  and then
differentiate the resulting equation with respect to p and ¢.

This approximation allows us to define the following new mean absorption and scat-
tering coefficients 0%, 0%, and 0%, the last two being approximations of o" and a” v
respectively:

1) = (OB e

op B Tee op’(T) (2.14)
a (e W)It,r, Qv))va (oW, Qv))van _ Y
B = i e S I CF 219
o5 (W) [1— x(W)]I(t,r,Q,v))0

is (
oi(t,r) = (I(t,r,Qv))a

~ (Uis( )[1 — (V)] I(t,r,ﬂ,y)),,, T o _is,v
~ T 0)s i = giev, (2.16)

The elimination of the € dependence of the mean absorption coefficients constitutes our
first approximation. It is not strictly necessary to the closure: one could choose to not
make it. The three mean incoming scattering coefficients are unchanged from (2.9)-(2.11).
The frequency-integrated RTE with these approximations becomes

1 e .

29I+ Q-VJ=TPart 505 ot

c 47
1

+ el J(Q’)(ag +05Q-Q +05(Q2-Q2)HdQ . (2.17)

We now introduce the following macroscopic quantities: the radiative energy given by

Brltx) = {15,200 = + (T(19)q (2.18)
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the radiative flux
FR(ta I') = <Q I(ta r,Q, V))V,Q = (Q J(ta r, Q))Q (219)

and finally the radiative pressure
1 1
Pgr(t,r) = - QeI r,Qv), o= - (e Q2 J(t,r,Q))g (2.20)

It should be noted that in (2.17) these moments appear in the integral term of the
scattering. This term can then be absorbed in the definition of the moments and the
integrated RTE written as

e

1 g a i8
EatJ+Q'vJ=ﬁaT4_UEJ_O—E

1 S
+E(CUSEER+U;FR-Q+CJSG Y PEai).  (221)

i,j=1..3

For this equation four remarks should be given. First, the introduction of the mean coef-
ficients allows expressing the scattering term as a function of the moments. Integrations
of the intensity are still needed in order to compute the moments, and in that sense the
formulations (2.17) and (2.21) are equivalent. Second, if the phase function has moments
of order higher than 2, this will introduce moments of order higher than the pressure in
the scattering term. Third, if the intensity used in the mean incoming scattering coeffi-
cients is the exact one, then the incoming scattering term is exact. Finally, this equation
has been derived with two assumptions relative to the absorption and isotropic scattering
terms, namely (2.15) and (2.16).

The frequency-integrated RTE (2.21) will be closed in the next section by propos-
ing expressions for the mean coefficients 0%, 0%, 0%, 0%, 0%, and o in terms of the
microscopic spectral coefficients o2, 0%%, o, a, /3, v, and 7.

2.3. Closure of the radiative equation with mean coefficients
The mean coefficients (2.15), (2.16), (2.9), (2.10), and (2.11) are closed in this section by
assuming a particular functional form for the intensity used in their definitions. For o§,
for instance, it is assumed that

<UG(U)I(t7r7Q7V))V747r <Ua(y)1*(t7ranay)>u4w *
o _ ~ AT _ o 2.22
2 (I(t,7,,0))y4r (I (t,r, @, 1)) am 9E (2.22)

where the assumed intensity is denoted I*. Similarly we assume that

is ~, -is* S . 8 K S~ S * S . 8 *
Op =0g , Ogp=0p, Op=0fp, 0g=0g (2.23)

where the designation * for the mean coefficients, 0%, a}f*, o%”, 0%", and 6&", indicates
that the intensity I has been replaced by the pseudo-intensity I*.

If we now assume that, at a microscopic level, the spectral absorption coefficient o® can
be approximated as a sum of polynomial functions of frequency: o®(v) = Efil Covi—3,
it follows that

N N
op =Y opiCLT) and 0§ =3 ok,(CFTr ) (2.24)
i=1 i=1
where op; and og; will be derived in the next section (Egs. (2.32) and (2.38)). In par-
ticular, it will be shown that they depend on the radiative temperature Tg and on the
anisotropic factor f defined below.
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If the spectral scattering coefficient can also be written as 0% (v) [1 — x(v)] =
SN Ci#ui=3 then the isotropic mean scattering coefficient can be then written in terms
of og; (see Eq. (2.38) in the next section) and is given by

N
08" = 3 05, (Ci, T, 1) (2.25)
i=1

Now let us assume that the incoming spectral scattering coefficients can also be approx-
imated as sums of polynomial functions:

N N N

o*(aw) = 3 CH 3, " W)BW) = 3 V=, and o*(W)y(v) = 3 €L
i=1 i=1 i=1
(2.26)
then we have

N N N
o3 =Y 03i(C3° TR f), 0" =) o5, (CP° Tr,f), 08" = 05,(CY°,Tg,f).

i=1 i=1 i=1

(2.27)

Finally, using these models for the mean absorption coefficients, the frequency-integrated
RTE in its closed form is given by

1 of a * is*
E@tJ+Q-VJ:ﬁaT4—aE J—oE T+

1 (05" Br+ 03" Fr - @+ cogy zljgpymm) (2.28)
2,7=1..

where all the mean coefficients are defined in terms of the functions o}, 0., , and oy,
defined in the following section.

2.4. Computation of the mean coefficients

The pseudo-intensity which is used in the definition of the mean coeflicients is obtained
from the maximization of the radiative entropy (Minerbo 1978; Fort 1997) and is given
by
2hv? hv -t
I*(t,r,Q = -1 2.2
(1, 900) = 25 lexpltre) -1 (2.29)

with T*(Q2) =1/(B(1 — A - Q)) and A and B defined by

_ /A 2 2 1%
A:ﬂf B 1 [3(‘34—&] i (2.30)

il © T T [3(1-[A]P)?

These two coeflicients are defined from the macroscopic quantities Tr, the radiative tem-
perature, and f, the anisotropic factor. The radiative temperature is defined in terms of
the radiative energy by Er = aT’g, and the anisotropic factor is given by f = Fg/(cER).

Let us assume that a polynomial approximation in frequency of the spectral absorption
and scattering coefficients can be done. Such a coefficient is chosen to have the following
form

N
o(v)=> C/'? (2.31)
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where C; are constants which depend on the gaseous medium considered, the volume
fraction of the main species, the pressure, etc.

First, the well-known Planck mean absorption coefficient is computed from the Planck
function (see Ripoll et al. 2001):

N N i-3
o(w)B(v,T)),, 15 . . kT
op(T) = W =Y oriCiT) = 5 il Ci i+ 1) <7> (2.32)
’ vy i=1 i=1
(2.33)
Second, the three mean coeflicients o}, 0, and o, are defined by
<U(V)I* (ta r, Q; V))I/ Q
7 = : 2.34
700 = T o 2,0 (239
* <U(V)Q-QII*(t,r,QI,I/»,,QI Q- <U(V)QII*(t7rJQIJV)>VQ’
— 2 = & 2.
UF(t; r, Q) (Q . Q'I*(t,l‘,ﬂ',ll))wnl Q. <QlI*(t,I',QI,I/))V7n: ( 35)
. ON27* ! ,
Jz;(t; I', Q) — <J(V)(Q Q ) I (tiri Q JV)>V:Q . (236)

((Q-QN)2I*(t,r, 2, v)).0
It should be noticed here that in I* the € dependence is only present through a

scalar product with the vector A. This greatly simplifies o as follows. The vector

(QUI*(t,r, ¥, v))qr necessarily has the form X (¢,r,v) A(t,r), where X is a scalar, which

leads to

(o)X (t,1,v)),

X, 0)) (2.37)

op(t,r) =

Thus, o does not depend on .

Moreover, the simple form of I* leads to analytical expressions for o and o, though
the computation is not detailed here (see Ripoll et al. 2001). These coefficients have also
been tested and validated for simple 1D problems (see Ripoll & Wray 2004a). They are
given by:

N
U*E(TRa f) = Z O'E'i(cia TR7 f)

;5 N , k 3pi (A
=57 3 (t=11Ci ¢(i+1) <hB(1 — ||A”2)) ﬁﬂln 1) (2.38)
N
U;‘(TRaf) = Za}i(ciaTRaf)
L R I Cre )H EUAD 5 59)
8t ot hB(1—[|A[]?) lA[>? '
with
P%(IIAII) =((1+ IIAII)" — (1= lAIDY/B+ ||A_||2) (2.40)
Pr([|A]l) = (1 = [[A[D)*GIIAI + 1) + (1 + A G| A[l - 1) (2.41)

with ¢ the Riemann Zeta function and A and B given in (2.30)}. The derivation of g

t for ¢ real but non-integer, these expressions are valid provided ! is replaced with I'(s + 1)
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involves the pressure tensor and is much more complex. We have

(0’(1/) Zj,k QJQ‘I]QkQ;cI*)V’Q:

ol = i k=1.3 2.42
S S RO PV o WPV (2.42)
Following the same developments as in Ripoll et al. 2001, it is found that
N
0&(Tr,£) = Y 05;(Ci, Tr, £) (2.43)
i=1
N i—3
45 : : k P, [|Al)
= — z—S!C’iCz+1)< ) G (2.44)
2t 207G GRa—Tap) TAT?
where P (A, ||]]) is given by
- (1 - [JA[) 24/ A (12 2 5
Pl = 1—||A A Al -3)(A-Q
G 1_||A||2+4(A_Q)2[( IA[DIAL" + (JA[F = 3)( )
+il[ AL+ [JADIIALP = (|A]li + 3)(A - )]
1+ ||A)
+ (- 1AL 5 [(IAII2 = DIIAIP + 3 - [[A*)(A - @)?)

1—[|A[]* +4(A - Q)
+illA[(L — [[ADIAI® + (Al - 3)(A - €)*]] (2.45)

It should be noticed here that the Planck mean op is a function of the volume fractions
C; and of the temperature, while the effective mean coeflicients o}, o}, are functions
of C; and of both the radiative temperature and anisotropic factor. In addition, o is
dependent on the scalar product between a vector parallel to the flux and the direction
Q.

The mean coefficients have been introduced to avoid the cost of the frequency inte-
gration. Thus, to be useful, the numerical cost of evaluating the mean coefficients and of
the iterations needed to solve for J must be lower than that of these time integrations.
The coefficients which are proposed here are analytic and should have low computational
cost. Furthermore, the three coefficients o, i ; have common parts (see (2.38)-(2.44)).
For absorbing media, it has been found that fewer than 6 iterations to solve the RTE were
needed in the cases studied (Ripoll & Wray 2004a), which indicates that this method
does not have a high numerical cost.

3. The linear case: application to soot

The apparent complexity of the coefficients in the previous section is only due to the
polynomial expansion in frequency. For sooty media the absorption dependence is linear,
and in this case the coefficients turn out to be quite simple.

The linear spectral absorption and isotropic scattering coefficients are written as

o¢(v) = C%, o°w)=C%, and o*v)[l-x(v)]=C%v (3.1)

As a rough approximation, we here also assume that the scattering follows a linear lawf.
The spectral scattering coefficients are then written as

! W)av) = C*%v, o*)B(v) = C?*v, and o*W)y(v) =C"*v. (3.2)

1 More complex models, such as in Houf 1999, could also be treated but would need to
introduce higher order terms in frequency
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We define for convenience the following coefficients:

k
cs = 360%090 (3.3)
wth
where z is a variable which will alternatively take the value a, €, is, (a,s), (8,s), (v, s)
below. The Planck absorption coefficient becomes then
k
0%(T) = opa(C°,T) = 360 06£T = 05T (3.4)
Using (2.38), (2.39), (2.44) for i = 4, and the definition (3.1), the general form for the
mean coefficients is given by

o1, (C% T £) = 3C% 1 +2!|A||2 ~ = C5 TR Gp(f) (3.5)
B(1 - [lA[*)B +[[All?)
 (ow _ Cp 5+IAIP _

1-[lA]* +6(A - Q)%)
(1= AP - [Al* +4(A - Q)?)
where the functions Gg, r, are obtained by using the definitions (2.30) in (3.5)-(3.7).

Hence, the mean absorption and isotropic scattering coefficients are given in the linear
case by

054(C*, T, ) = Cp g =CLTrGe(f,Q) (3.7)

05" = 05, (C*, Tr, f) = Cp TR G (f) (3-8)
of" = 054(C*, Tr, ) = CE TrGu(f)

and the incoming mean scattering coefficients are given by

05" = 054(C%*, Tr,£) = C3* T Gr(f) (3.10)
05" = 03,(CP*, Th,f) = CF° Ta Gr(£) (3.11)
Ug* = 054(CW’S7TR7f7 Q) = 07375 TR GG(f7 Q) (312)

The integrated RTE,

e

28+ = P Tt g% gt J+ - (05" Brtof " Fr-Q+co > PP
C 7/

4T .
i,j=1..3
(3.13)
becomes using the previous definitions :
1 [ )
zatJ +Q-VJ= i—;:aT‘r’ — CTrGE(f)J — CETRGE(f)J
T S
+ ﬁ(cCSGE(f)ER +CRGr(OF - Q@ +cCPGa(f,Q) Y PRi0l).
i,j=1..3
(3.14)

If isotropy is assumed for the functions Gk, r g, the following simpler form is obtained:
1 Cfs 5 a is
E&J +Q-VJ= EGT —CpTRrJ — C8TRJ

T o
+ﬁ(cC%ER+C§'FR-Q+cC} > Pl (3.15)
i,j=1..3
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with CIB,I =5/ 4C§.. In Ripoll & Wray 2004a, it was found that the function Gg played an
important role. Eq. 3.15 should hence not be used for radiating flows where the anisotropy
| £]] is larger than 0.3.

4. Macroscopic radiation models for absorbing and scattering media

We show in this section that the mean coefficients can be easily included in macroscopic
moment models. We define the three first moments with respect to direction as

B (t,r,0) =~ (T(t,x,9,0))q (1)
F(r,0) = (I(t,r,,0)q (42)
P (t,r,v) = % Qe QI(trQ,v), (4.3)

The first moment equation is obtained by integrating Eq. (2.1) with respect to 2. We
obtain

HES +V -FL = drco®(v)B — co®(v)ES} (4.4)
where the incoming and isotropic scattering have canceled using the normalization prop-
erty (2.4).

Multiplying (2.1) by €, and integrating with respect to it, using the phase function
definition (2.3), we obtain

1 .
Z@Fg +¢cV-PE = —(6°(v) + o (v)(1 — x(v)) — US(V)@)Fg. (4.5)
The following three equalities have been used:

Using definitions (2.18), (2.19), and (2.20), the integration of (4.4) over frequency gives
HEr+V -Fg=ca(ocpT* — o4ER) (4.7)

where models 0% and 0%, ~ 0%* were given previously in (2.24).
Integrating (4.5) over frequency leads to the second moment equation

1 . 1
EatFR—i-cV-PR = —(op +oF — gUﬁ)FR, (4.8)
for which the models for the mean coefficients are
N
op =03 =Y opi(CF,Tr,f) (4.9)
i=1
N
o ~ 0" =) opi(CP, Th,¥f) (4.10)
i=1
i N
op ~op =Y opi(C)°,Tr,f) (4.11)
i=1

where or; is defined in (2.39).
Closure of the macroscopic model (4.7)-(4.8) is achieved by modeling the radiative
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pressure in (4.8). In many different closures the pressure is written as Pr = Dgr(f)ERg,
where Dg(f) is the Eddington tensor (Ripoll & Wray 2004b).

Combining the steady forms of (4.8) and (4.7) to eliminate the flux Fg leads to the
general Milne-Eddington equations

1
-V -( —— 5.V (DrEg)) = 0pal* — o} Ep . (4.12)
(0 +0F — 30%)

Or, similarly, by eliminating the energy Eg, one obtains

e
-V (% V- -Fg)+ (0% + ol — 1ag)m = —cV - (Z2DgaT?) . (4.13)
OE 3 oE

We have two main comments on the model (4.7)-(4.8); they also apply to the formu-
lation (4.12)-(4.13). First, the normalization property (2.4) eliminates the pressure term
coming from the scattering in the first moment equation (4.7). Second, the contribution
of the incoming scattering integrated over direction only enters through the first order
and delta-function parts of the scattering function in (4.13), since the zero and second
order terms vanish.

5. On the use of these models and their numerical costs

The models presented here will be useful when the solution for frequency dependent
intensities cannot be done due to its cost. This is usually the case for coupled problems.
We now give a discussion on reducing the computational cost of the models presented
here.

First, when using mean coefficients, it is possible to reduce the computational cost by
noticing that when the radiation is isotropic and close to equilibrium, the coefficients
oE,c are equal to the Planck mean and of to (i + 1/4)op. There is hence no need to
evaluate the complex expressions for o r g, and they should be simply replaced by their
limits. More generally, these limits can be extended to ||f]| < 0.1 when T ~ Tg. In the
case where the radiation is isotropic but T # Tg, the limit that should be taken is also
the Planck mean but evaluated at Tg instead of T't. It should also be noticed that the
form of the mean coefficients proposed here, in terms of A and B, should be retained. As
a matter of fact, this choice allows checking the different limits and avoids introducing
singularities. For instance, (2.30) can directly be replaced by their limits, respectivelly
A=0and B=1/T, for ||f|| <0.1.

The solution of the RTE with mean coefficients requires iteration since the mean
coefficients are nonlinear functions of I. The required number of iterations has been found
to be small in many simple cases (Ripoll & Wray 2004a), but one could be tempted to
reduce it further. In the case of using such an equation for coupled problems, the previous
time step provides excellent starting values for the iterative solution so that the required
number of iterations should be lower, perhaps only one or two. Another alternative in
this case could be not to iterate the RTE at all, i.e., to lag it in time, assuming that a
small difference between the opacity and the intensity due to their non-synchronization
in time with the fluid motion will not strongly affect the solution. This is likely when a
global convergence process of the hydrodynamics and radiation to a steady state leads
to synchronizing all the variables at the end. For the very first iteration, the Planck limit
seems to be a good initial condition. It should also be noticed here that the moment model

1 as was shown in (3.15) in the linear case
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(4.7)-(4.8) can similarly be solved by using the mean coefficients from the previous time
step of the radiation loop or of the hydrodynamics loop in coupled problems.

6. Conclusion

The objective of this work was to propose a simple model accounting for radiation
in complex emitting, absorbing, and scattering media. To do that, models for mean
absorption and mean isotropic and incoming scattering coefficients have been proposed
in the case where the various spectral coefficients can be written in terms of polynomial
functions. Some of these models were previously derived and validated (Ripoll et al.
2001, Ripoll & Wray 2004a) for non-scattering media; they have been extended here to
the general case. An integrated RTE which uses these coefficients has been derived where
the integral scattering term has been absorbed into the modeling. Such a form of the RTE
is much less costly to solve than the RTE in its non-modeled form. Macroscopic moment
radiation models, written in their hyperbolic or diffusive forms, have also been derived
using these coefficients. The particular case where the spectral coefficients are linear in
frequency has been treated. This case is particularly important for soot and hence for
combustion applications. It has also been explained how such models can be used at
a lower cost by reducing the number of iterations needed. We believe the formulations
proposed here could be used in many complex or coupled problems, like flows radiating
in dusty media, where, for instance, isotropic and non-isotropic scattering are usually
disregarded and neglected due to their computational cost.
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Macroscopic modeling and computation of
radiation for a 2m diameter pool fire

By J.F. Ripoll

1. Motivation and objectives

In large pool fires, radiation is the predominant mode of heat transfer (Cox 1995;
Tieszen 2001), and its computation is usually time consuming. The use of macroscopic
moment models (Modest 2003; Siegel & Howell 2001), which have a lower cost than
directly solving the radiative transfer equation (RTE), is thus very attractive. In this
paper, the M; radiation model, sometimes referred to as Mazimum entropy closure see
(Minerbo 1978; Levermore 1984; Fort 1997; Brunner & Holloway 2001), is chosen to
model the radiation field generated by a synthetic fire (Brown & Blanchat 2003).

The first goal of this work is to show the ability of the M; model to solve a real fire
case occuring in a complex geometry. The fire considered here occurs in the FLAME
facility of Sandia Albuquerque, and the particular and complex geometry of this facility
will be taken into account. A discussion of the radiative characteristics of the fire will be
given to show the coherence of the modeling.

Average opacities, also called effective mean absorption coefficients, are of outstanding
importance for radiation modeling. They allow one to take into account, at a macroscopic
level, the frequency dependence of the spectral opacity. For fires this spectral coefficient
is mainly determined from the soot volume fraction and is linear in frequency. As a
result, the mean absorption coefficients are different from the Planck mean absorption
coefficient, which constitutes their usual approximation. In this paper, new effective mean
absorption coefficients, derived in (Ripoll et al. 2001), are used to model the opacity field.

The opacity field is obtained from a computation using the Sandia Vulcan code and
accounts for both gas and soot radiation. From this, a global coefficient representative
of a mixture of soot and gas is derived and used in the computation of the emission and
absorption coefficients.

The first part of this article is a description of the M; model, the mean absorption
coefficients used therein, and the numerical scheme used for its solution. The second part
is devoted to the validation of the M; results. In the particular case of two concentric
black cold spheres cooling a hot, emitting gas, the solution obtained by the M; model is
compared to the analytic solution. In the third part, results of the computation of the
synthetic fire are given and discussed.

2. Radiative transfer equations
2.1. The My radiative model

The M, or Maximum entropy closure, radiative model (Minerbo 1978; Levermore 1984;
Fort 1997; Brunner & Holloway 2001) describes the evolution of the radiative energy Eg
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and the radiative flux Fir of a non-scattering medium at temperature 7T'.
&Er +V - Fr = c[oaT* — 0Eg] (2.1q)
1 - - = .
E(‘)tFR+cV- <DR ER) = —0 FR (21b)

where ¢ is the speed of light and o the opacity. The radiative flux has three components
in R, Fg = (Fg, F¥, F%)T. The Eddington tensor Dp, is computed from the Eddington
factor x and the anisotropic factor f = (fz, fy, f.)T = F_’;g /(cER):

2 _Eg_l—XICZl_’_Z‘Ex—I

Dr 7®f with i =

“Ex 2 2 17 22)

where Id denotes the identity matrix, Pr is the radiative pressure, and ® stands for the
dyadic product. The Eddington factor x(f) is a function of the Euclidian norm of f,

(Al
» oo Ss+4lfIP?

x(f) = = 2.3
54 2+4/4 —3||f|? 23)
The radiative temperature is defined from the radiative energy by
1
ER 4 . 8 7f5k4
TR = (7) with a = 1—5 h3c3 (24:)

where k is the Boltzmann constant and h the Planck constant.

2.2. Computation of mean absorption coefficients

When the spectral coefficients can be written as polynomial functions of the frequency,
it is possible to derive closed formulas for the mean absorption coefficients using the
following pseudo-intensity I* (Ripoll et al. 2001):

—1
2hv3
2

hv
ET*(4))

I =I(v, T*() = exp( )—1 (2.5)

where h is the Planck constant, k the Boltzmann constant, v the frequency, Q the direc-
tion of propagation, and T*(Q2) = T'/(B(1 — A - Q)) with A and B defined by

i- 2_V4_3l|f||2f

e (26)
LT[ 3404 7
= T [3(1 - ||A||2)3] @7

This pseudo-intensity has a Planckian form and maximizes the radiative entropy (or
minimizes the mathematical entropy) under the constraint of the reconstruction of the
two radiative moments (Minerbo 1978; Fort 1997; Brunner & Holloway 2001). A and B
are given by this constraint.

When the spectral absorption coefficient is frequency dependent, i.e. when the medium
is not gray, this intensity can also be used to define the associated effective absorption
coefficients o and o, which are given below.

t |lg|| denotes the Euclidian norm of a vector g.
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For sooty flames, such that the size of the soot particles is much smaller than the
mean free path (Rayleigh approximation), the spectral absorption coefficient is linear in
frequency, becoming simply o(v) = Cyv, where C; depends on the soot volume fraction
C, and is defined in (Smith & Shaddix 1996) by
1 36mn pCy
c(n? —p? +2)2 + 4n2p?’
where the values n ~ 1.57 and p = 0.56 of (Smith & Shaddix 1996) are used. Hence Cy

is a linear function of the soot volume fraction: C; = 8.33 x 10~9 C,.
The well-known Planck mean absorption coefficient, op, is given by

(e@)B, T))v0
(B, T))va
where B is the Planck function and (B), o denotes the integration of B over frequency v

and direction 2. The effective mean absorption coefficients, o and o, are defined and
modeled by

Ci =

op(T) = (2.8)

(cW)I(t,r, 2, v))va  (cW)I*(t,r,Q,v))0
(I(t,l‘,ﬂ,l/)),,,n B <I*(t,1‘,ﬂ,l/)>y,n
(c@)QUE,T, Q2 v))va (e r,Q,v))0

(QI(t,I‘,Q,I/))wn B (QI*(t,r,Q,V)),,,Q

and are functions of time ¢ and position r. These integrals are computed in (Ripoll et al.
2001) and are given by:

op(t,r) = (2.9)

(2.10)

op(t,t) =

kGs . kGs
op = 360 Cy mT =CpT with Cp= 36(]%01 (2.11)
kGT(L+ || Al1%) 1+ 1412
or = 1080C = 30 , (2.12)
i ' hatB(3 + [[A]R)(1 - [[A]P) "BE+ 4P - 4P
kGT(G+ AP _op 5+ |4]
_ _op _ 2.1
7r =00 L SBA— [AIR) ~ 4 B[4 (2.13)
Using (2.6) and (2.7), the coefficients become
O'EZCPGE(f)TR and UF:CPGF(f)TR (2.14)
with
1/4 )
Gl (=1+vA=3IA7) (117 = 4+2y/2= 31712 ) I£1 015
E =7 ’
4
VIFIE =2+ VI=3[IFIE (—2+ A= 3[I7T )
1/4 )
G ! (-1+va=307P) (111 +4 - 2/2=3[7P) 216)
F = — . .
4
VIFE =2+ A= 3IFPI
The M; radiative model with mean coefficients becomes
O ERr + 6 . FR = C[O’paT4 - O’EER] (2.170,)

1, = = = —
E(‘?tFR +cV- (DR ER> = —0F FR (217b)
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2.3. Numerical Schemes

The M; model with mean coefficients can be reformulated in a conservative form as
follows (Ripoll et al. 2002):

OUr + V, F(UR) +V, G(UR) + V., H(UR) = SR(UR,T) (2.18)

where

1 1 1
— E _ Fw - FZ/ - Fz

UR(RacRacRacR) (2.19)
)= ( F&, cD¥’ER, cD}ER, cDFER) (2.20)
G(Ug) =( F}%a CD%wER, cD%yER, CD%ZER), (2.21)
)=( (2.22)
) (2.23)

Flz%, CD%wER, CD;yER, CD%ZER) 5
SR(UR,T = ( C (aUPT4 — UEER) ; —O'FFE, —O'FFI%, —O'FFE ) .
Thus, given a computational field covered with a mesh of control volumes, the partial

differential equations can be integrated on these polyhedra. Using Green’s formula, this
system is discretized in time by an explicit scheme.

URZI}c —Urijk | Tiviyzgne — Fitasgm 2.94
At + Az (2.24)
n - gr. H? —H?
n z,J+1/2,kAy i,j—1/2,k + m,k+1/2Az i,4,k—1/2 =SR(UR?,J-,1¢)- (2.25)

In order to compute the convective terms, an upwind flux-limited scheme, the HLLE
scheme (Hirsch 1990), using Roe’s approximate Riemann solver, is used. This scheme
applied to the M; model approximates the divergence as follows:

n—+1 _ f"+1

i+1/2,4k ~ Ti1/2.4k _ 1 +1 +1 n+1 n+1
A = 5z (P + o —e (Ui = Unih))
1_ L 1 n+1 n+1
B 2 Az (F;T’L]—t_k + Fin_—iiajvk -¢ (URi,Ik - Uszl,],k))(226)

G and H are obtained similarly to F by permutation of i, j, and k. A second order
correction which is needed to obtain better accuracy is given in (Ripoll et al. 2001).

3. Numerical Validation

This section is devoted to the numerical validation of the M; model and of the solver
used.

The geometry for this test is the annular region between two concentric spheres. The
inner sphere has a radius R; = 1.0 and the outer sphere has radius R, = 1.6. Both spheres
have unit transmissivity (zero emissivity) and are exposed to cold black surroundings
I; = I, = 0. The scattering coefficient within the annulus is zero while the absorption
coefficient and retardation factor are set to unity. The annulus also has a uniform heat
generation rate of () = 4.

With an uncertainty of 0.0005%, the steady state radiative energy is given in (Burns
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Radiative Energy: M, Solution vs. Semi Analytical Solution
A heat source Q=4 radiating between two cold black spheres

R x  Semi Analytical Solution
3 — M, Model
RTE direct solver 1
2L P, Model |
1 il
0 . | . | . | . | . | .
1 11 12 1,3 14 15 1,6

Radius

FIGURE 1. Hot gaz radiating between 2 concentric Spheres

1.0 3.6108 1.2 6.3288 14 6.0233 1.6 3.8398 (3.1)

1.1 5.8619 1.3 6.3390 1.5 5.3508

For the M; solver, a domain of 1000 nodes is used to obtain mesh convergence. The
steady state solution is converged in time, and the final residue is 10715,

The solution found by the M; solver is in very good agreement with the semi-analytical
values and with the solution given by a RTE solver, see Fig. 1. It may also be seen that the
M, closure constitutes an improvement, compared to a simple closure like P;, which in
this case gives an inaccurate solution. The non-symmetry of the solution and the position
of the maximum value, at r = 1.2 for the RTE solver and at r = 1.25 for M, indicates
that the three dimensional geometry is well computed. These results demonstrate the
accuracy of the method and its solver.

4. Computation of radiation for a pool fire

The domain of computation, describing a quarter of the geometry of the FLAME
facility at Sandia Albuquerque, is shown in Fig. 2(left) (Brown & Blanchat 2003). The
domain is three dimensional, but can roughly be considered axisymmetric due to the
circular bowl containing the fuel and the circular facility for the entering air. All results
plotted are in the plane z = 0.05, but the computations are done in 3D. The synthetic fire
has been computed by A. Brown (Brown & Blanchat 2003) of Sandia Albuquerque. The
mesh used for the computation is 31 x 31 x 93. The wall and the bowl are simulated by
a very large opacity, 1000 m~—!, where radiation cannot propagate. The domain is hence
considered completely open, and the opacity o, playing the role of walls, will regulate the
radiation field. It must be noticed here that the exact position of the bowl, where the fuel
burns, is spread out vertically over two cells, centered at z = —0.05 and z = —0.15. The
first computational cells adjacent to it are z € [0.,0.1] (white zone), centered at z = 0.05.

In Fig. 2(right), the profile of the temperature of the synthetic fire is given. Four zones
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FIGURE 2. 2D cut of the computationnal domain (left); T' (right)

can be seen: (1) the flame zone, delimited by the flame front where the temperature is
higher, (2) the hot gas region, flowing in the chimney, (3) a moderately high temperature
region on the right of the fire (between 400K and 700K ), where the opacity is small but
not zero, generated by gas trapped by the too small size of the chimney, and (4) a region
of quasi-ambient-temperature situated below the bowl. It is assumed that the absorp-
tion coefficient oy, provided by Sandia, has been determined from a Planck absorption
coefficient in which a mixture of soot and gas is considered to radiate with the same op-
tical properties as soot. This last assumption constitutes the main approximation since
gaseous flame mixtures are, unlike soot, not gray media. This approximation allows us
to determine the volume fraction Y;, of the mixture soot+gas as follows:

05 = 0p(Yim,T) = Cu YT =~ Cs Vi T (4.1)

Then Y,,, = 0,/(CsT) gives the mixture fraction of our mixture and is plotted in Fig. 3.

The opacity of the fire is now considered as given from this mixture, and the three
mean coefficients op (Y, T), 08 (Y, Tr, || 1), and o (Yo, T, || f]]) are used in this com-
putation. These coefficients are plotted in Fig. 4-6. For each of these three figures, the
high opacity zone in the flame is shown on the left: the maximal value reaches 10m !
(zones higher than 10 are red and must be disregarded). The low opacity region, between
1m~! and 0.1 m~1, present close to the fire and in the chimney, is plotted on the right
(here zones higher than 1 are red and must be disregarded). The steady state profile
of both radiative temperature and energy computed with M; are given in Fig. 7. An im-
portant remark can immediately be given: the model does not propagate radiation below
the bowl, as can be the case with other models, like P;. The flame zone of the fire admits
a high radiative temperature, but lower than the gas temperature, signifying a strong
emission in this region. Furthermore, the moderately high temperature region absorbs a
small quantity of radiation. The three components of the flux are plotted in Fig. 8. On
the left, it can be checked that the x-component of the flux is very low compared to the
others, signifying that the profile can be considered as nearly cylindrically symmetric.
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FIGURE 3. Yo, high volume fraction regions (left), Y., low volume fraction opacity regions

(right)
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Moreover the symmetry around to the z-axis can be checked. In Fig. 8(center)-(right),
very close to the bowl, a region of negative fluxes can be seen, indicating that the bowl is
heated by radiation. Radiation propagates clearly in the direction of the chimney and in
the direction of the right wall. Two high temperature zones, one very close to the bowl
and the other at 3m high, emit strongly in both chimney and wall directions, see Fig.

8(right).
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In Fig. 9(left), the flux vector V = (F},, F§) is plotted. The three directions of propa-
gation mentioned before are confirmed: toward the chimney, the wall, and the bowl. An
important remark is that radiation does not propagate below the bowl in a pathological
way, as we would find using some diffusion methods. In this region, where the opacity is
almost zero, it can be seen that no dominant radiation occurs. The anisotropic factor in
Fig. 9(center) indicates an isotropic region, central to the fire, where, due to symmetry
around the z-axis, the fluxes are very small or zero. At one meter from the center of
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the fire, radiation becomes anisotropic and, from there, isotropic models, like P;, should
not be used. The most anisotropic region is situated far from the fire, close to the wall,
almost below the bowl, and “sees” the fire through a small window. The small opacity
and angle of view explain this anisotropy region where ||f|| reaches its maximal value of

0.94.

In Fig. 10, the radiative net heat flux, i.e. c(cpaT* — ogER), which is the coupling
term intervening in the energy conservation equation of Navier-Stokes (modulo the sign)
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FIGURE 9. V = (F§, F%) (left); ||f]| (right)

is plotted. Three ranges of scale have been chosen in order to differentiate the absorption
zones from the emission ones. In the first figure, Fig. 10(left), the blue zone must be
disregarded, as must be the red one in the next figure, and both blue and red ones
in the third figure. In Fig. 10(left), the non-blue region of the flame zone indicates a
strong region of emission. In Fig. 10(center), exactly in the first cells adjacent to the
bowl, a strong absorption region can be seen. This indicates that the bowl is heated
by the fire in a strong way, where we know it participates in an important way in the
vaporization of the fuel. The vaporization process conditions the whole fire flow, and it
is hence particularly important to predict it accurately. An accurate computation of the
absorption of radiation is thus very important in this region. Moreover, a few centimeters
higher, the hot gas in the flame cone region, not yet reacting, also absorbs heat from the
flame zone. Finally it can be noticed that the wall of the chimney absorbs some heat as
well. In Fig. 10(right) are plotted the regions where a low but non-negligible absorption
occurs. The fire is bounded to the right by an absorption zone, which confines the heat.
The right wall absorbs some heat as well. Finally, below the bowl, neither absorption or
emission occurs.

5. Conclusion

A model of radiation using a moment method has been proposed for fires. The models
for the transport of radiation, for the computation of the opacities, and their discretiza-
tions have been presented. A pool fire occuring in a complex geometry has been computed
by this model. The results are found to be coherent and consistent. This model thus seems
to constitute a good alternative to the solving of radiation by direct RTE methods, which
are more costly. This work constitutes the preliminary results of a much bigger project
involving the collaboration of NASA Ames, Sandia Albuquerque, and Ecole des Mines
d’Albi. In this project, the radiation of a fire, which is comparable to the one studied
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FIGURE 10. Positive net heat flux (left); Strong negative net heat flux (center); Low negative
net heat flux (right)

here, will be solved by several methods, including this one, and compared (Jensen et al.
2004).
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Direct numerical simulation of turbulent
condensation in clouds

By R. Paoli AND K. Shariff t

1. Motivation and objectives

Clouds are responsible for precipitation, scattering and absorption of electromagnetic
energy, and cloud particles serve as sites for chemical reactions. To properly incorporate
these processes in cloud-resolving codes or climate models, the crucial quantity required
is the droplet size spectrum n(r) within a computational cell, defined such that ndr
gives the number of particles in the cell having radii between r and r + dr. The role of
turbulence in clouds has been the object of intensive investigation in the atmospheric
science community over the last forty years. (Consult the reviews by Pinsky & Khain
1997, Vaillancourt & Yau 2000, and Shaw 2003). Turbulence has three effects on the
development of the droplet size spectrum: (i) During the initial phase of condensational
growth it causes each particle to experience a different fluctuating supersaturation as it is
transported and this leads to a broadening of the spectrum (Cooper 1989). (ii) Turbulence
causes particles to cluster when they become large enough that particle inertia becomes
important; this clustering eventually influences the size spectrum during the coagulation
phase. (iii) Finally, during the coagulation phase, turbulence increases the number of
particle encounters. The present work aims to further elucidate the first of these effects
with a view to developing sub-grid models for it. In the atmospheric sciences literature,
this effect is referred to as “stochastic condensation.”

The first step in current approaches for modeling stochastic condensation (see for
example Khvorostyanov & Curry 1999q) is to write down the transport equation,

of  (0fu;) _ 94 7)

ot ij - or ’
for the particle size distribution f(x,r,t). Here f(x,r,t)dxdr gives the number of par-
ticles in the four dimensional phase space volume dx dr at (x,r). The next step follows
the standard approach for Reynolds averaging. Decomposing variables into mean and
fluctuating parts, f = f + f', r = 7 + 7/, and averaging the entire equation leads to the
appearance of covariances like u;- f! or 7 f which are modeled using a mixing length ap-

(1.1)

proach. Khvorostyanov & Curry (1999b) were able to obtain a solution for f in terms of
gamma functions which is an attractive result as many observed cloud-droplet distribu-
tion can be fitted with gamma distributions (Shaw 2003). One of the assumptions made
by those authors was to use a linear relation between droplet growth rate and supersat-
uration fluctuations, 7' ~ S’ based on the analysis by Srivastava (1989) and heuristic
considerations about the equivalence between Brownian motion of small particles and
the motion of turbulent eddies.

In this brief, we investigate the turbulent condensation of a population of droplets by
means of direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian

t NASA Ames Research Center, Moffett Field, CA 94035
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solver is used (see Paoli et al. 2004) where each particle is tracked and its growth by
water vapor condensation is monitored exactly. The main goals of the study are to find
out whether turbulence broadens the droplet size distribution, as observed in in situ
measurements. The second issue is to understand if and for how long a correlation between
the droplet radius and the local supersaturation exists for the purpose of modeling sub-
grid scale microphysics in cloud-resolving codes.

This brief is organized as follows. In Sec. 2 the governing equations are presented,
including the droplet condensation model. The implementation of the forcing procedure
is described in Sec. 3. The simulation results are presented in Sec. 4 together with a
sketch of a simple stochastic model for turbulent condensation. Conclusions and the
main outcomes of the study are given in Sec. 5.

2. Governing equations

The dimensionless forced compressible Navier-Stokes equations are

% . %;jj) o (2.1)
O(g;u) 6(081;:%) 665, _ ég:; +pfi,i=1,...,3 (2.2)
i - T Y
0(;(;?) a(pal;};uj) _ Re{qcn 6523? + pwn + pan, n=1,2. (2.4)

Here p is the density, u = [u1,u2, us] is the velocity vector, p is the pressure, E is the
total energy, Q = [Q1, Q2, Qs3] is the heat flux vector given by Fourier’s law, C, being the
non-dimensional specific heat at constant pressure. The quantity 7;; is the shear stress
tensor, and Y,,,n = 1,2 are scalar fields, Y; being the temperature 7" and Y, the vapor
mass fraction Y,, while w,, are physical source terms for Y,,. In the case of water vapor
(Y2 =Y,), ws = w, represents the removal of vapor due to condensation. Quantities are
made non-dimensional using reference values: pret for the density, arer for the velocity, pres
for the pressure, l,¢r for length, Tier for temperature, per for the dynamic viscosity, and
Cp rer for the specific heat. The Reynolds number is defined as Re = avef lrer / (iref/ pref)-
The Schmidt number is defined as S¢;, = piret/pret Dn, where D, is the diffusivity of scalar
n. For atmospheric conditions vapor diffusivity (given in Pruppacher & Klett 1997, p. 503
is not too different from thermal diffusivity and so we chose S¢ = 0.75 for both vapor and
temperature. Finally, the terms pf;, pW, pgi , and pgs in (2.2)-(2.4) represent forcing
of momentum, total energy, temperature and vapor, respectively and are described in
detail in the next section.

The use of compressible equations to simulate atmospheric clouds requires some com-
ment since use of the incompressible or Boussinesq equations is more common. The rms v’
of velocity fluctuations in clouds is of the order of 1 to a few meters per second (MacPher-
son & Isaac 1977). For ' = 3 m/s and speed of sound a = 300 m/s, the turbulence Mach
number My = u'/a = 0.01. If we were to choose a similar M; for the simulations, the
CFL criterion would lead to a time step that is very small compared with the flow time.
Instead we chose M; ~ 0.05 for the simulations. This leaves the velocity field essentially
incompressible, but allows one to run with an affordable time step. However, in weakly
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compressible flow, temperature fluctuations are induced by pressure fluctuations and are
proportional to M?. Furthermore the mechanisms for temperature fluctuations in the
atmosphere are not unrelated to flow induced pressure fluctuations. Thus we have no
right to derive the temperature from the energy E which obeys (2.3). For this reason,
temperature is obtained independently by solving a scalar transport equation for Y; = T'.

2.1. Particle treatment

Due to their small size (less than about ten microns during the condensation phase), the
relaxation time 7, = 4p, r? /18y of particles is short compared to the smallest turbulence
time scale. They can then be treated as tracers which follow the gas according to

dxp

dt
Gas variables at a particle location x, are estimated by linear interpolation, using the
values at the nodes of the surrounding cell (see Boivin et al. 1998 for details). For the law
of droplet growth by condensation we start with equation (15.74) in Seinfeld & Pandis
(1997) and ignore the solute contribution to the equilibrium vapor pressure over the
drop. We retain the latent heat term as well as the curvature contribution (Kelvin effect)
and the kinetic corrections to effective vapor and temperature diffusivities. (We verified
a posteriori that the last two contributions are negligible for drops > 1um). We are thus
left with

= u(x,,1). (2.5)

dr  a(r,T)S

bt et U el i 2.6

dt T (2:6)
where S =Y, — Y (T) is the local supersaturation with respect to water and a(r,T)
is a coeflicient that depends on temperature and droplet size. Saturation conditions are
obtained from the fit by Sonntag (1994)

pi=pX:=exp(ailnT +axT ' +a3+asT+asT?) (2.7)

where the mass fraction Y;?(T") and molar fraction X3(T) at saturation are related by
Y= X3/(XE + (1= X2) Wair/Wy), with Wi /W, = 28.85/18.01 = 1.6.

2.2. Numerical method

The gas transport equations (2.1)—(2.4) are discretized in physical space by means of
the sixth order compact scheme by Lele (1992). They are advanced in time together
with (2.5)—(2.6), using a 3rd order Runge-Kutta scheme. Periodic boundary conditions
are used in the three directions of the computational cube which has sides Lo, = 2.
The code is parallelized using domain decomposition with MPI as the communication
protocol.

3. Turbulence forcing

In order to obtain a statistically stationary velocity field, a body force f(x,t) =
[f1(x,1), f2(x,t), f3(x,t)] is applied to the momentum equations. Physically, this rep-
resents the effect of processes such as turbulence production by shear and the turbulent
cascade which occur on scales larger than the computational box. To preserve univer-
sality of the smallest scales of turbulence, only the (low) vector-valued wavenumbers k
within the sphere k = |[k| < ky are forced. The force is represented as a finite Fourier
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series (see Eswaran & Pope 1988a)

=) e f(k,1) (3.1)

k<ks

where f(k, 1) = [fi(k, 1), (f2k, 1), f3(k, 1)] and f;(k,t) = fF(k,t)+i f](k,1) is the Fourier
transform corresponding to k = ko [l,m,n] (ko = 2m/Lpor = 1 being the fundamental
Wavenumber) while the summation is intended over the three components, | = —N/2 +

, »N/2; m=—-N/2+1,.,N/2; n==N/2+1,.., N/2, with the condition k = ko(I* +
m? + n?)'/?2 < k;. At each wavenumber, f(k,t) is obtained from the divergence-free
projection

Bk, £) = gk, £) - (k- g(k,1)/k*) k, (3:2)
of the three-dimensional stochastic process g(k,t) = [g1(k,?), g2(k,t), §3(k,t)] which is
composed of six independent Uhlenbeck-Ornstein (UO) processes corresponding to the
real and imaginary parts of g;(k,t) = gf(k,t) +igj(k,t),j = 1,...,3. These processes
are governed by the Langevin stochastic differential equation (Lemons 2002),

R,I
9; (k, t)
Tf

dt + N0, 1) zafdt (3.3)
Tf

dg" (k1) = g (k,t + dt) — g;" (K, 8) = —
where 7; and o are, respectively, the autocorrelation time and standard deviation of all
processes, while Ntt+dt(0, 1) is a normally distributed random number with zero mean
and unit variance associated with the time interval [¢;¢ + dt]. From (3.3) it can be easily
shown that each UO process has zero ensemble-mean and is exponentially auto-correlated
with time lag 7y, i.e.

(97" 1,0)) =0 (3.4)
< Tk, ) g™ (k, t+s)> = o258l /71 (3.5)

Using the condition that f; be real (ie. ff(-k) = ffi(k), f/(-k) = —f/(k)) and
the requirement f fj dV = 0 that the force not change the net linear momentum (i.e.
fF(0) = f{(0) = 0), one has for the forcing terms f; and W in (2.2) and (2.3)

N/2 N/2 N/2

i(x,t) —2222 kat cos(k - x) — f(k t)sin(k-x)], k<ks (3.6)

I=1 m=1n=1
ijxtujxt /Zf] (v, t) u;i(y,t)dV (y). (3.7

The quantity W represents the work done by the force and must be added in compressible
flows to maintain consistency between the momentum and energy equations (see e.g. Kida
& Orzag 1991). In the statistically stationary state the amount of work done by the forcing
equals viscous dissipation to heat. The integral term in (3.7) removes thermal energy in
the mean and is necessary to keep the mean internal energy in the computational box
from monotonically increasing due to viscous heating.

3.1. Scalar forcing

Let us now consider the forcing terms ¢, in the scalar equations (2.4), and for the
sake of clarity neglect the subscript n which simply identifies the scalar (temperature or
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water vapor). The same stochastic forcing as described above is used in (2.4) to drive
temperature and vapor fluctuations at the large scales. In actual clouds it is convection
and mixing between air parcels, and radiation, etc. that drive the fluctuations. Following
the usual approach, one can decompose ¢(x,t) as

=Y %Gk,t), with 4(k,t) = ¢"(k,t) +iq" (k, 1), (3-8)
k<kjs

where ¢?(k,t) and ¢ (k,t) are chosen to be UO processes defined by

Lk, t
dg™! (k,t) = _g it dt + NJT4(0,1) /2 og@, (3.9)
Tq Tq
Using the fact that g(x,t) is real one obtains finally
N/2 N/2 N/2
q(x,t) =2 Z Z Z )cos(k - x) — ¢’ (k,t)sin(k - x)], k< ky. (3.10)

=1 m=1n=1

In (3.9), we chose 7, = 74 assuming that the same process, namely large eddies, drive
scalar and velocity fluctuations. The ampltitude parameter o, could be obtained by
requiring that the standard deviation of the resulting scalar field (temperature or vapor
concentration) be in the range of atmospheric values. Strictly speaking this can only be
verified a posteriori, however, one can obtain a good prediction of the resulting variance
by using the assumption of a particle system, as often done in the simulation of turbulent
flows (see Pope 2000). In these kinds of methods, the flow is regarded as an ensemble of
fluid particles each carrying a different value for the scalar Y which evolves according to
a Langevin equation

dy (t) = —w dt + ) [q"(k,t) + ¢" (k, 1)] (3.11)
m k=1
dg™! (k,t) = —w dt + NiT4(0,1) 4 /2 03? (3.12)

where Ny indicates all forced modes. The first term in (3.11) is a classical exchange-with-
the-mean mixing model, 7, being the mixing time (usually taken to be the integral time
scale 7, of the flow) which is assumed to be equal to forcing time scale, 7,,, = 7¢. From
(3.11) one may then derive

Nys/2
At > (g™ (k1) + ¢" (k,1)]) = 0 (3.13)
do? k_la Ny /2
=T 2L (Vi) + (1), (3.14)

Using (3.4)-(3.5) and (3.9), one finally gets to
(Y') = const = (Y), (3.15)

2 2 2
o, 2t t
oy (t) = Ny 42 ¢ (1 — e /e - Z e 2t/Te _ e_“/“> (3.16)

Te Te
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N Re 4 =+/2/3K Le/Lbox Rex kmazn ovi/ (Y1) ovy/{(Y2)

64 2000 0.05 0.162 49 1.15 0.001 0.001
128 3333 0.05 0.162 69 1.68 0.001 0.001

TABLE 1. Flow-field parameters

10°
~ 10

10'F

E(k)/nu

10°F

10"

1
00 10 20

IR R L L
30 40 50 10°
t/7e (a) (®)
F1GURE 1. (a) Evolution of the standard deviation of the three componets of the velocity field.
Particles are introduced at t/7. = 10 when the velocity field is statistically stationargr. (b) Energy
spectra normalized by the Kolmogorov length n and velocity w,. Solid line: 128° simulation;

dashed line: 64® simulation; symbols: Rey ~ 69 grid-turbulence experiments of Comte-Bellot &
Corrsin (1971).

which shows that oy achieves a stationary value oy, which satisfies

2 1/2
Oq = T¥eo <N_f) . (317)

Te

This relation can be used to design o,, knowing some characteristic values for oy, in the
atmosphere. For temperature (Y — Y; = T') and vapor concentration (Y — Y3 = Y,),
Kulmala et al. (1997) report or,, ~ 0.3K and oy,  ~ 1.4 x 105, which give, for the
present simulations, g,, = 2.2x 1073, and g4, = 1.0 x 107¢. We verified a posteriori that
these choices did indeed lead to the desired fluctuation levels (see next section).

4. Simulation Results

For each simulation a statistically stationary turbulent flow is first generated according
to the method described above. The radius of the sphere of forced wavenumbers is ky =
V/8, giving a total of N t = 92 forced modes. The standard deviation and autocorrelation
time scale of the stochastic forcing were chosen to be, respectively, o7 = 1.339 x 10~* and
7 = 20.8 (the same as in Eswaran & Pope 1998b). The resulting turbulence statistics of
the flow are provided in Table 1, where kpmez = 7N/ Lpog, K = 1/2 (02 +02,+02,) is the
turbulent kinetic energy, L, = Ly; is the longitudinal integral length scale, Rey = u'\/v
is the Reynolds number based on the Taylor microscale A (see Pope 2000 for details).
These statitsics were obtained by averaging over samples collected between ¢t = 107,
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FIGURE 2. Evolution of the statistics of droplet radii r and supersaturation S. (a) Mean values
(r) and (S). The three rising curves show (r) while the three falling curves show (S). (b) Standard
deviations o, and os. The three rising curves show o, while the three fluctuating curves show
ogs. Line types: , vapor equation is forced throughout (case 1); ———- , vapor forcing is
removed at particle insertion (case 2); —-— , vapor equation is unforced throughout and the
vapor field when particles are inserted is set to be random Gaussian (case 3).

when the velocity fluctuations reach their statistically stationary value, up to about
t = 507; see Fig. la. This figure shows that velocity fluctuations are isotropic; this
was also confirmed by examining the two-point longitudinal and transverse correlation
functions (not shown). The bulk of the simulations were performed on a 64 grid; the
rest employed a 1282 grid which gives a higher Rey and allows validation of the method
against the grid-turbulence experiments of Comte-Bellot & Corrsin (1971) (see Fig. 1b).

Scalar equations are also forced with the same method, with the means set to (T') =
292K and (Y,) = 0.01415, respectively. The resulting standard deviations are or =~
0.29K and oy, ~ 1.4 x 10~°, which are in the range of atmospheric values reported in
the literature (see Kulmala et al. 1997).

At t/7. = 50, N, = 962 droplets are randomly distributed in the computational domain
and time is then reset to zero. Their number was chosen to satisfy two major constraints:
first, it must be high enough that accurate Lagrangian statistics can be obtained, and
second, the particle spacing A = (Vol /Np)l/ 3 must be of the same order of the Kolmogrov
scale as in clouds (see Sec. 1). This was indeed verified in the present DNS where A =
27/96 = 0.67 A or A = 1.8 (for the 643 simulations).

The reference length is taken to be lof = 2.5 cm which implies a dimensional box
size of 15.7 cm (for a kinematic viscosty of air vief = firet/pret = 1.5 x 1075 m? /s, this
also sets a reference velocity ares = Vrer Re/lrer = 1.2m/s, and turbulent fluctuations
Ou;aref ~ 6cm/s). The droplets are initially monodisperse with radius 7o = 5 um.

Figure 2 shows the time evolution of the statistics of droplet size and of the local
supersaturation. Three cases were run with different types of forcing of the vapor field.
Each case is shown using a different line type and is described in the caption. As the mean
radius (r) increases by condensation, the mean supersaturation (S) decreases due to mass
conservation. However, their standard deviations are quite different: o, increases, up to
about 1 ym while og fluctuates about a certain value. Apart for a short transient in case
3 which is due to the adjustment of water vapor to the turbulent flow, the insensitivity
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FIGURE 3. Time evolution of droplet size distribution: (a) Case 1; (b) Case 3; —— ,
1=0207¢; —=== , t="Te; — — , E =2T¢; -0 ,t=057e.

of the results to vapor forcing implies that in the present simulations supersaturation
fluctuations are mainly controlled by temperature fluctuations.

The increase in o, reflects broadening of the droplet size spectrum, as is often observed
in cloud measurements (Shaw 2003). This is further shown in Fig. 3 where the distribution
of particle radius is plotted at various instants. The mechanism of broadening is that each
individual droplet absorbs a fraction of the available supersaturation, depending on the
local thermodynamic conditions and water vapor concentration, and grows with its own
rate, according to (2.6). Integrating the latter gives

t
r(t) = rg +/ 205 (t) dt (4.1)
0
which shows that the square of the radius r depends on the time history of supersaturation
S. In particular, for two droplets i and j and for a short time ¢ the difference in the
radius goes like 77 — r? ~ t(S; — S;). Equation (4.1) also indicates that r and S initially
develop a correlation but subsequently turbulent fluctuations decorrelate them. This is
clearly shown in Fig. 4 where the correlation coefficient Crs = (r'S') /o,05 (S’ being
evaluated at particle locations) is shown for the two cases with and without forcing
the vapor transport equation. The figure shows that, at least for the present Re) and
dissipation rate, the correlation coefficient is > 0.5 up to t = 71/ = 57¢. It is interesting
to compare 71/ with the characteristic condensation time for a cloud, which coincides
with the supersaturation absorption time (see Khvorostyanov & Curry 1999a), 75 =
(4w (r)g D2N,/Vol) . In non-dimensional form, this is 7y = 167 ~ 87, or 75 ~ 1.6 71>
for the current simulations. Figure 5 shows scatter plots of r and S at different times
for case 1. As the previous figure, they show that S'/os = r'/o, up to t ~ 27,. This
result may be used to model the droplet microphysics at the sub-grid scale level in cloud
resolving LES, as mentioned e.g. by Paoli & Shariff (2003), and discussed next.

4.1. Towards a stochastic model of condensation

One goal of this work was to study the correlation between droplet radius and local
supersaturation in a cloud and, eventually, to model it for application in cloud-resolving
LES codes. The object of this section is to propose a modeling methodology.

The concept of fluid particles has already been used in Sec. 3 to derive a simple re-
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FIGURE 4. Temporal evolution of the radius-supersaturation correlation coefficient: solid line,
case 1; dashed line, case 3.

4 4
3k 3k
2 ‘: 2
1F 2 1k
s o s o
0s Lk - 0e Lk
3 3
E e 3
2F 2F
3k 3F
»4: 1 1 1 T 1 1 1 1 »4: 1 1 1 TR A | | IR | 1
-4 3 2 T 0 1 2 3 -4 3 2 10 1 2 3
r (a) r (b)
Tr ar

lation between o, and oy, . The same approach is used here for a system of physical
droplets, as they have negligible inertia and exactly follow fluid particles. Thus, averag-
ing over droplets is equivalent to volume averaging provided the number of droplets is
“sufficiently” high. This has been verified for the present simulations. Assuming a statis-
tically stationary temperature forcing and neglecting water vapor forcing, one can use a
Lagrangian formulation to describe temperature and vapor evolution around a physical
droplet,

dy, = _Y = () dt — Amapyn,r’r (4.2)

Te
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or oy
FIGURE 5. Evolution of the scatter plot of droplet radius and supersaturation for case 1
(rF=r—(),5=5S—(9)):(a) t=0257; (b)t=7¢; (c) t =27¢; (d) t =5 7e.

T —(T [
dT = —# dt + /203, ? Nit0,1) (4.3)

where n, is the droplet number density and p,, is the water density. Expanding the
supersaturation S in (2.7) around the ambient temperature T, one gets after some
algebra

dY,
T

V(D) = Vi) + )T (T = To) = Vi(Tu) [1 4 uolT ~Tos)] (4

with poo = a1 Tog! — as T2 + as + 2a5 Too. Substituting the latter into Eqgs. (4.2) and
(4.3) and rewriting for completeness the equation for the growth of droplet radius gives

S —(S) .
=" oo Vs (Too)1/ 202 — Amapynyr? 4.
ds . dt + ¢ (Too)/ 207, dt — ATapynpr=7 (4.5)
dr = O‘T—S dt (4.6)
Taking the average of these equations over a population gives
d(S)
ek —Anapyn, (Sr) = —4napyn, ((S) (r) + Cs, 0,05) (4.7)
a6y _aw? | d(o?)
g T = 2 . 4
dt a a2 (48)

The problem then is to close, using information from the DNS, the covariances that
appear when taking higher moments of r and S (such as, for example, the correlation
between r’ and S’). This represents the object of our current research.

5. Conclusions

In this brief, a direct numuerical simulation of the turbulent condensation of a popu-
lation of droplets was perfomed using a coupled Navier-Stokes/Lagrangian code. Forcing
of the small wavenumbers was used to sustain velocity, vapor, and temperature fluctua-
tions. The resulting supersaturation fluctuations were responsible for the broadening of
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the droplet size distribution in agreement with in situ measurements. Finally, a sketch
of a possible approach for modeling the correlation between droplet size and supersatu-
ration for use in cloud resolving LES was presented.

Computational resources were provided by the NAS Supercomputing Division at NASA
Ames Research Center which is gratefully aknowledged. The first author wishes to thank
the Center for Turbulence Research for its hospitality during his post-doctoral stay at
NASA Ames and Stanford University.
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Droplet growth by turbulent coagulation

By N. Riemer AND A.S. Wexler

1. Motivation and objectives

Rain formation and the role of clouds in climate and atmospheric chemistry are closely
linked to the evolution of the cloud droplet spectra. Our understanding of these processes
is still fragmentary (Beard & Ochs 1993; Pinsky et al. 2000). This implies that the
treatment of clouds leads to large uncertainties in weather and climate predictions.

Cloud droplets are initially produced by condensation of water vapor onto nuclei.
Condensation alone, however, cannot form drops that are large enough to precipitate. In
the absence of the ice phase this requires the coagulation of smaller droplets resulting in
a larger drop. The process of coagulation relies on relative velocities between the droplet.
One mechanism to provide relative velocities is the gravitational settling of the droplets.
The larger droplets fall faster and collect smaller droplets on their way. However, this does
not describe the real situation in a cloud sufficiently since the droplets are transported
in a turbulent environment which results in relative velocities that will deviate from the
mere differences of the terminal velocities in calm air.

Recent literature agrees that the in-cloud turbulence can enhance the collision kernel
and hence the droplet growth significantly. However, the quantitative treatment of these
processes represents a fundamental gap in our understanding of cloud microphysics. Al-
though the potential importance of turbulence for droplet growth has been noted by
Arenberg (1939) more than 60 years ago, progress has been slow in this area. At present,
turbulence effects on cloud microphysics are ignored in most current cloud models.

Air turbulence in clouds can modify the collision process in at least four ways. First,
particle inertia leads to increased relative velocities and less correlated velocity directions
(acceleration effect). Second, the wind field shear produces collisions between particles
even with the same inertia (shear effect). The acceleration and the shear effect are often
referred to as the transport effect. Third, coagulation rates are enhanced due to local con-
centration increases for particle response times on the order of the Kolmorgorov scale. For
this phenomenon the terms “preferential concentration” or “accumulation effect” have
been coined. Fourth, turbulence can also impact the local droplet-droplet hydrodynamic
interactions.

Since turbulence also influences the fields of temperature and water vapor it may im-
pact condensational growth due to the turbulence induced fluctuations in supersaturation
(see for instance the article by Paoli & Shariff (2004), this issue). This process, however,
is beyond the scope of this paper.

Depending on the relation between the governing time scales of the fluid and the
particle response times, the impact of the transport and accumulation effects varies. The
transport effect is most dominant if the particle response time 7, is on the order of the
flow integral time scale T, whereas the accumulation effect is most dominant if 7, is on
the order of the Kolmogorov time scale 7, (Wang et al. 2000; Reade & Collins 2000).

t Department of Mechanical and Aeronautical Engineering, University of California, Davis,
U.S.A
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Maxey (1987) first showed the phenomenon of preferential concentration, which was
expanded by Squires & Eaton (1991) and Wang & Maxey (1993). Sundaram & Collins
(1996) introduced the pair correlation function to quantify the effect of preferential con-
centration in the collision kernel. Since this work, further efforts have been made by
Wang et al. (1998), Wang et al. (2000) and Zhou et al. (2001) to develop a model for the
collision kernel on the basis of the solution of the Navier-Stokes equations using direct
numerical simulations (DNS).

Pinsky & Khain (1997) brought the concept of preferential concentration to the atmo-
spheric science community as a phenomenon that could play an important role in cloud
microphysics. Indeed, several authors measured the existence of small-scale concentration
fluctuations in clouds which strengthens the hypothesis that preferential concentration
is also present in the atmosphere (Brenguier & Chaumat 2001; Kostinski & Shaw 2001).

Laboratory studies are rare compared to the theoretical ones, especially in the parame-
ter range that relates to atmospheric clouds. Obviously, it is not feasible to cover the entire
turbulent kinetic energy spectrum present in natural clouds with laboratory experiments.
Woods et al. (1972), Jonas & Goldsmith (1972) and Neizvestny & Kobzunenko (1986) all
conclude from their experiments that turbulence enhances drop collision. However, their
experiments were limited to relatively small collector drops. Vohl et al. (1999) confirmed
for larger collector drops that the droplets grow faster in turbulent flow compared to
laminar flow.

As outlined in the brief literature review above, many of the theoretical studies have
been devoted to the derivation of collision kernels. Few studies, however, investigate the
resulting development of droplet size distributions (Park et al. 2002; Pinsky & Khain
1997). In light of the recent DNS-derived kernels we explore the possible impact of
turbulence on the droplet size distribution for atmospheric conditions systematically,
approaching the problem in two steps.

First, we will consider a Lagrangian box model of a cloud parcel simulating the evolu-
tion of the cloud droplet size distribution under the assumption that only coagulation is
occuring. We will employ the coagulation kernel presented by Zhou et al. (2001), since
their parameterization covers the accumulation and the transport effects. By applying
this parameterization to atmospheric conditions, the potential influence of turbulent co-
agulation on droplet growth is evaluated.

In the second step, we will expand this model to a 1D-column model so that conden-
sation, and transport processes such as turbulent diffusion and sedimentation can also
be included.

In the following section the calculation of the turbulent collision kernel is outlined.
Section 3 presents numerical results of the box model simulations, and Section 4 presents
results of column model. Finally, future work is addressed in Section 5.

2. The collision kernel

Zhou et al. (2001) provide a model to predict the geometric collision kernel in a bidis-
perse system for a turbulent fluid, which is derived from DNS. This model includes both
the turbulent transport effect and the accumulation effect. In this work we apply this
kernel to calculate the development of cloud droplet spectra under atmospheric condi-
tions. The following section outlines the calculation of the collision kernel in a turbulent
fluid.

The ensemble average of the collision kernel K(ry,r2) for two particles with radii rq
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and rs in a turbulent fluid can be expressed in a generalized form by Sundaram & Collins
(1997):

(lwr(ry,72)])
<|wr,shear (7'1; 7'2) |)
where R = r; + ry is the collision radius and

87 Vg
Iop=1/—=R}= 2.2
o=\ ERS (2:2)

is the collision kernel for zero-inertia particles according to Saffman & Turner (1956), with
the Kolmogorov velocity scale v = (ve) i, where v is the kinematic viscosity of the fluid
and e is the dissipation rate. The Kolmogorov length scale is n = (v®/ €)%, and E; is the
turbulent collection efficiency. The notation (|w,(r1,r2)|) denotes the ensemble-averaged
magnitude of the relative velocity of particles with radii r; and 2.

The collection efficiency F; is defined as the product of the collision efficiency Eeo ¢
and the coalescence efficiency FEcqa,+. The collision efficiency represents the ratio of the
actual number of collisions to the number for complete geometric sweep-out. However,
collision does not guarantee coalescence. The coalescence efficiency accounts for this fact
and is defined as the ratio of the number of coalescences to the number of collisions.

The hydrodynamic interactions of droplets in turbulent flow are highly uncertain, but
there are indications that the collision efficiency is larger in turbulence than in calm air
(Pinsky et al. 1999). In our study we retain the value Ego; = 1. An estimation of the
impact of Ecer; < 1 based on the work of Pinsky et al. (1999) is given in Riemer &
Wexler (2004).

Even less is known about the coalescence efficiency in turbulent flow, E¢q, ¢. Laboratory
studies of small colliding droplets show that the coalescence efficiency is close to 1 if the
droplets are charged and an electrical field is present (Rogers & Yau 1989). Because weak
fields and charges exist in natural clouds, we therefore assume Eq5+ = 1 for the sake of
simplicity.

The term (|w,(r1,72)|)/{|wr shear(r1,72)|) With its two components — shear and acce-
laration — represents the turbulent transport effect by

Ky(r1,m2) = EIo

12(R), (2.1)

1
2 2

_ R r s _ wr,acce 2
<|wr,shear(r17T2)|> =y 1§7rv n’ % o [1 +15 v3 l (%) ]
2
Wy accel \? 0,0 0146
7 = Cul®) () =2 (00 +00) - % [ttt ) < @9)

1 _ 1
[(1+91)(1+92) (1+701)(1+792)] ’

where 0; = 2.57,(r;) /T, (i = 1,2) is proportional to the ratio of particle response time
7 = 20,72/ (9vp) to flow integral time T, = u'’/e. Here, p, is the particle density, p the
fluid density, r; particle radius and «' the fluid r.m.s. velocity fluctuation.

Equation (2.3) is developed on the basis of the formulation by Kruis & Kusters (1997).
To fit their numerical results, Zhou et al. (2001) introduced the function Cy,(¢) = 1.0 +
0.6exp [—(¢ — 1)"5] and the factor v = ¢ x 0.183u'*/y/ev with ¢ = max (62/61,01/62).

The factor

g12(R) =1+ pi2v/g11(R) — 1\/g2a(R) — 1 (2.4)
is the bidisperse radial distribution function at contact and accounts for the accumulation
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yo(a) = 18a?

y1(a) = 0.3602° exp(—a®?®)
y2(a) = 0.24 exp(—0.5a)
y3(a) = 0.013 exp(—0.07)
zo(a) = 3 [1 + tanh "‘0__205'5]
zi(a) = 3 |1+ tanh "‘_0—1125]

z2(a) = % [1 + tanh "‘;—?}5]

TABLE 1. Auxiliary functions for the radial distribution function g;;

effect, which is governed by the monodisperse radial distribution functions g;; (i=1,2; no
summation implied) and the concentration correlation coefficient

p12 = 2.6 exp(—1)) + 0.205 exp(—0.0206¢)%(1 + tanh(y) — 3)). (2.5)

where ¢ = max (7p2 /Tp1, Tp1 [ Tp2) and
gii = 1+3y0(@)[1 = 25 ()] + Razg (@) {1 (@)[1 = 21 ()] + y2(@)21 (@) + ys (@) 22(a)}. (2:6)

The functions yo(a), y1(a), y2(a), ys(a), z0(a), z1(a) and z2(«) are given in Table 1.
Here, the argument o = 73,; /7, is the Stokes number where 73, = \/V_/G is the Kolmogorov
time scale.

The monodisperse radial distribution function g;; scales with the Taylor-microscale
Reynolds number, which is defined as Ry = u’A/v with the transverse Taylor microscale

A=/ 150u'? /€. The linear dependence of g;; on R) is based on the results of DNS, which
only cover a range of low Reynolds numbers compared to atmospheric conditions. The
extrapolation of this relationship to high Reynolds numbers introduces some uncertainty
which we must keep in mind when interpreting our results.

Zhou et al. (2001) employ furthermore the following assumptions in their model: The
size of the particles is on the order of or less than the Kolmogorov length scale n. The
particle volume fraction and mass loading are sufficiently low so that the presence of the
particles does not impact the gas turbulence. These assumptions are valid for clouds as
established in Section 2.1.

Moreover, their DNS do not include the effect of gravity. In the atmosphere, clearly
both turbulence and gravitation effect the size distribution. Therefore it is necessary to
formulate a collision kernel that includes both mechanisms. The usual approach for mod-
eling the impact of several coagulation mechanisms, for instance Brownian motion and
gravitational settling, is simply adding the individual kernels. As Butuirat & Kielkiewicz
(1996) show this method gives satisfactory results. However if the accumulation effect is
also involved, the formulation of the resulting kernel requires more caution because sedi-
mentation might counteract the clustering effect (Vaillancourt & Yau 2000). The overall
effect of the interaction of gravitation and turbulence on the coagulation of particles is
still not very well understood at this stage and represents an area where further research
is needed.

Unless otherwise indicated, we will consider the effect of gravity and turbulence sepa-
rately. To estimate the interaction of these processes, we simply add the turbulent and
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sedimentation kernels. Clearly, this approach is only preliminary and will be improved
as research progresses.

In our investigation the sedimentation kernel K4(ry,r2) for calm air will be employed
for comparison, which is given by:

K(r1,7m2) = n(ry +1r2)2 Eslor(r1) — vr(r2)]- (2.7)

Here, E; is the collision efficiency for calm air for which we use the values provided by
Hall (1980), and vr(r1), vr(r2) are the terminal velocities of the droplets in calm air.

2.1. Calculation of the size distributions
The stochastic collection equation describes the evolution of a colliding and coalescing
cloud droplet size distribution (Pruppacher & Klett 1997):
0 t)
n(Tm 3 f n(me,t) (mc,m’)n(m’,t)dm' (2.8)
—fmo m,t) K (m,m")n(m',t)dm’

where n(m,t) is the drop number distribution function at time ¢ and K (m.,m') is the
collection kernel describing the rate at which a droplet of mass m. = m —m/ is collected
by a droplet of mass m’ forming a droplet of mass m. The following transformation of
variables leads to the stochastic collection equation for the mass size distribution g(y,t)
(Berry 1967):

g(yat)dy = mn(m7t)dma n(m7t) = #g(yat)a (29)

where y = Inr, and r is the radius of droplets with mass m.

89(

3 Joo wir 9We, VK (ye, y')g(y', 1) dy’
= [ gy, ) KL g (', )y (2.10)

As the initial cloud droplet distribution we use a Gamma, function of the form n(m,t =
0) = Ly /m?exp (—m/m), where L,, is the total cloud water content, and m is the mean
droplet mass. Assuming spherical droplets, m and the mean droplet radius 7 are related
by m(r) = 4/3np,r, where p, is the water density.

For our simulations, L,, is set to 1 gm™3, typical for warm rain clouds and # to 10 ym,
a typical cloud droplet size. This means that the assumptions mentioned above (low mass
loading and particles smaller than or on the order of n) hold. Solution of the stochastic
collection equation (2.10) uses the flux method by Bott (1998), which has been proved
to be both efficient and mass conservative. For the collection kernel X we employ the
turbulent collision kernel K; as described in Section 2 for different atmospheric conditions
and compare the results to those obtained with the kernel for sedimentation in calm air
K, (equation (2.7)).

Cloud dissipation rates ¢ depend on cloud type and age. The values range from
10 cm?s—3 for stratus clouds to several 100 cm?s~2 for cumili and 1000 cm?s~3 for
cumulonimbus clouds (Pruppacher & Klett 1997).

Figure 1 shows measured dissipation rates € in clouds with the corresponding r.m.s.
velocity u' (MacPherson & Isaac 1977). From dimensional arguments, a cubic relation
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FiGURE 1. Full circles: Measured values of u' and ¢ in clouds (MacPherson & Isaac 1977), dashed
line: fit of measured data, solid line: particle radius for which 7, = 7% (see text for details).

between € and u' is expected, since

uIS

L 7
as long as the characteristic length scale L is relatively constant. The dashed line shows
the fit to the data points for L = 1500 m. The solid line shows the radius r; that fulfills
the condition 7,(ry,) = 7% (€), showing that the accumulation effect is important.

Clearly, for values of € that occur in the atmosphere, the values for r; are in the
range of observed cloud droplet sizes. Therefore the accumulation effect is expected to be
significant for droplets between 30 um and 100 gm. The transport effect, however, is less
important since 7, = T, applies for unreasonably large particle sizes under atmospheric
conditions.

In the following, the values of € = 300 cm?s~2 and u' = 3.5 ms™! are used for the
base case, which fulfill equation (2.11) and represent in-cloud turbulence of moderate to
high intensity.

€=

(2.11)

1

3. Box model simulations

In this section we evaluate the influence of turbulence on the evolution of the drop
size spectra if only coagulation is considered. Figure 2a shows the turbulent coagulation
kernel K; according to equation (2.1) for the base case, and figure 2b shows the relative
differences (K; — K,)/K, to the sedimentation kernel K, according to equation (2.7).
Given equation (2.7), it is clear that K depends both on the absolute and on the relative
particle sizes. In particular, since it depends on the relative velocity it becomes large if
the sizes of the colliding droplets are different and zero for equally sized droplets. The
turbulent coagulation kernel K; exhibits a distinct local maximum for the combination
of droplet radii near 65 ym and 250 pm using the base case values for € and «'. The exact
position as well as the magnitude of this maximum depend on € and «'. It shifts to larger
radii for smaller dissipation rates, which means that higher dissipation rates enhance
the coagulation process at an earlier stage. Note that the local maximum in the 65 to
250 pm size range is not of primary importance for the onset of effective coagulation.
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FIGURE 3. (a) Temporal evolution of the mass size distribution with sedimentation kernel ac-
cording to Hall (1980). (b) Same as (a) but with turbulent kernel (base case). : start,
+++: 10 min., -—-- : 20 min., — - —: 30 min.

To be effective, turbulent coagulation must help particle grow through the 10-40 ym
gap. Below this size range condensation grows particles effectively, above this size range
settling coagulation becomes an effective mechanism for particle growth. Indeed figure 2
shows that K; is by about a factor of 5-10 larger than K in this size range. Moreover,
turbulent coagulation is also effective for same-sized particles.

We can therefore expect that the impact of turbulent coagulation is especially signif-
icant in the initial stage of the development of the cloud whereas the impact decreases
for large cloud droplets or rain drops.

Figure 3 shows the temporal evolution of the mass distribution g(Inr) for the sedimen-
tation kernel and for the turbulent kernel for the base case. For the sedimentation kernel
(figure 3a) a second mode appears only after about 30 minutes. At ¢ = 30 min, most of
the mass (97 %) is still distributed over the droplet size range smaller than 100 ym, con-
firming the well known fact that sedimentation alone cannot explain the fast formation of
large droplets. For the turbulent kernel (figure 3b), the second mode forms already after
10 minutes, because the turbulent coagulation kernel of Zhou et al. (2001) accelerates the
formation of large drops. For simulation times around one hour, the sedimentation and
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turbulent kernels predict similar distributions, supporting the finding that turbulence is
especially important for the early stage of the development of the cloud. If the combined
sedimentation and turbulent kernel is considered, the second mode becomes visible after
only 5 minutes, and after 30 minutes 96 % of the mass is transferred to sizes larger than
100 pm (not shown here).

The temporal evolution of the size distribution shows a strong sensitivity to the dissi-
pation rate. We will address this point in section 4.

4. 1D simulations

With the boxmodel presented in section 3 only the impact of coagulation has been
studied and we found that turbulent coagulation can accelerate rain formation signifi-
cantly. In the real atmosphere, however, condensation is also an important process — in
fact condensation is the governing process in the early stage of droplet growth. Addition-
ally, transport processes such as turbulent diffusion and sedimentation take place. The
question arises if the result of the previous section still holds considering the interaction
of these processes.

To address this question, we consider a column of air parcels with a prescribed aerosol
distribution that undergoes an updraft (e.g. cooling) process. For the set up of the base
case and the initial condition see table 2.

The size distribution of the aerosol particles (solid line in figure 4a) is initially pre-
scribed in each grid box. We use 100 logarithmically spaced bins to discretize the size
distribution with respect to radius. At the start of the simulation the water content of
the aerosol particles is calculated according to equilibrium conditions assuming that the
aerosol consists of ammonium sulfate. As a consequence of the ascent of the column su-
persaturation is reached and a proportion of the aerosol particles are activated serving
as cloud condensation nuclei (CCN). The processes of condensation/evaporation, coag-
ulation, turbulent diffusion and sedimentation shape the size distribution and feed back
on the supersaturation of the system. We assume a constant updraft velocity and do not
consider entrainment processes.

The following set of equations describes the system: As the column rises, the potential
temperature 6 and the specific humidity ¢ change according to:

9 80 p\"® L, (0

Kk =)_(2 - 4.1
ot 0z ( h(’)z) (p) Cpap at? phase’ (4.1)
¢ O ( 3q> 1 (8 )

—=—|Kpr=—=)+-{=¢ . (42)
ot 0z 0z P \Ot") hase

Here K}, is the eddy diffusivity for heat, cp, is the specific heat of dry air at constant
pressure, L, is the latent heat of condensation, p is the pressure, and p is the air density.
Changes of the size distribution of the water mass g,, are calculated as follows:

G0 _ 9 (1 0\ 0
P — o (K850} = 3 ) (13

10 0gw
Hgy — - —(Hgy —
+Hgw = 35, (Hg )+<6t "
The last term corresponds to coagulation and is defined in equation (2.10). The
second term of the right hand side describes sedimentation with terminal velocity v.
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Updraft velocity 1 ms™!

Vertical gridsize 20 m
Total column height 500 m
Initial aerosol distri- see figure 4

bution

Eddy diffusivity 10 m?s™?

Dissipation rate 300 cm?s™2

r.m.s. velocity 3 ms™!

Relative humidity from 91 % (layer 1, bottom) increasing to 99.6 % (layer 25, top)
Temperature from 285 K (layer 1) decreasing with wet-adiabatic lapse rate

TABLE 2. Model parameters and initial conditions

The third and fourth terms specify the condensation/evaporation with the condensa-
tion/evaporation rate H defined as

(4.4)

here m is the mass of a particle of size r.
The growth rate Om/dt of the particles is calculated according to Majeed and Wexler
(2001).

om(r) _ 4mr D) Myp° (T)/(RT) [RH — exp(A — B)]
Bt~ T4 (D Myupe (T)](RT))(Ly M (RT)) (L, (A, T)) cxp(A — B)’
with
2Mwa'w Mw Mg
- RT,py,r’ B= VmEmd —my’ (*5)

where M, is the molecular weight of water vapor, M, the molecular weight of the solute,
R the universal gas constant, D!, the water diffusivity corrected for non-continuum effects,
T the temperature of the environment, T, the droplet temperature, p°(T") the water
saturation pressure at T, RH the relative humidity, L, the latent heat of water, k.,
the thermal conductivity corrected for non-continuum effects, o,, the air-water surface
tension, p,, the water density, v, the number of ions per solute molecule, mg, my and
m,, the masses of solute, droplet and dry particle.

A corresponding equation can be formulated for the aerosol mass distribution. Since
we do not consider chemical processes the terms for condensation/evaporation vanish.

090 _ O (4092 O 99a
ot~ 02 (K” 6z> gz Vi9w) + ( ot ) (4.6)

The term due to the phase change of water vapor in equations 4.1 and 4.2 may be
obtained by integrating over the whole droplet spectrum :

6q> /°° 19
ar = Hgy — -+ (Hgy)dy (47)
<6t phase 0 3 8:1/( )

For solving these equations we apply operator splitting. The terms for turbulent diffu-
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FIGURE 5. Rates of change of the water mass size distribution due to condensation.
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sion are solved with an implicit scheme, for the sedimentation terms we use the advection
algorithm according to Dhaniyala & Wexler (1996).

Coagulation is treated as following: For the dry aerosol mass we use a fixed grid with
respect to the dry particle radius and apply the method by Bott (1998). The associated
water is moved from bin to bin accordingly assuming an internal mixture of the whole
droplet.

For the condensation of water we use a moving grid. The advantage of this hybrid
approach (e.g. fixed grid for coagulation, moving grid for condensation) is that it avoids
numerical diffusion as it occurs when treating condensation on a fixed grid. It also en-
sures that the aerosol mass is regenerated after evaporation, which is important for the
investigation of aerosol processing.

Figure 4a shows the temporal development of the dry aerosol mass size distribution
in layer 6 for the base case. Starting from the initial distribution, the dry aerosol mass
is transferred to larger radii over the course of the simulation due to the coagulation
process. The corresponding development of the water mass distribution in figure 4b
shows that large droplets are formed after 25 min. To understand the development of the
size distribution it is necessary to analyse which process is most important at various
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FIGURE 6. (a) Rates of change of the water mass size distribution due to coagulation. (b) Same
as (a) but for sedimentation. : 7 min., ---: 15 min., -=—=-- : 20 min., — - —: 25 min,,
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times over the course of the simulation. Figure 5 and 6 display these processes for this
purpose. As seen from figure 5 condensation is dominant for the size range below 20 ym
and therefore most important for the early stages of the simulation. Figure 6a shows that
after 25 min. coagulation takes over and shifts the mass from sizes below 20 ym to those
above 100 um. As seen in figure 6b sedimentation becomes important once the droplets
have attained a critical size of about 300 um. This process eventually removes the water
and associated CCN from the column.

Figure 7a shows the sensitivity towards the turbulence intensity. All size distributions
are shown at t=30 min. The case without turbulent coagulation (coagulation only due
to sedimentation) is included for comparison. For this case we see the results of the box
model study confirmed. The size distribution is still very narrow and does not show
any formation of larger size droplets. For € = 100 cm?s~3 the second maximum is not
apparent, but a broadening towards the right is noticable. For both € = 300 cm?s~2 and
€ = 500 cm?s~? large droplets are formed. For ¢ = 500 cm?s—3 the formation occurs
already ealier in the simulation so that at t=30 min. more water mass has been removed
from the column due to sedimentation.

Finally we want to address the uncertainty concerning the Reynolds number depen-
dence of the coagulation kernel. As mentioned in section 2 some uncertainty is introduced
in the calculation of the coagulation kernel since we assume that the radial distribution
function g15 depends linearly on the Reynolds number. While this assumption holds for
the range of Reynolds numbers that are covered in DNS, it is unknown if this would
still be the case for Reynolds numbers in the atmosphere or if g1 would level off after
some (likewise unknown) threshold value is reached. Such behavior has been found for
other problems in turbulence. For instance Belin et al. (1997) have shown for the velocity
gradient distributions in turbulence that a change in the dependence of the parameters
of the distributions on the Reynolds number can be found around R) = 700. To esti-
mate the sensitivity in our model we carry out an additional simulation where R in
equation (2.6) is set artificially to 700 while € and u' are set to the base case values. The
result in figure 7b shows that compared to figure 4b, the development of large droplets
is clearly delayed. However, compared to the case with coagulation due to sedimentation
only strong acceleration of the large droplet formation within the first 30 min. can still
be noticed.
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5. Conclusions and future work

In this paper we have investigated the impact of turbulence on the development of
cloud droplet spectra. In a two-step approach we have shown first that — compared to
the effect of sedimentation in calm air only — even moderate turbulence can enhance the
formation of large droplets significantly. The largest impact of turbulence is expected
for similar sized particles and/or for particles in the size range smaller than 100 pm.
Here, the collision kernel is enhanced by several orders of magnitude if turbulence is
included, which accelerates the growth of droplets dramatically. By treating coagulation,
condensation, turbulent diffusion and sedimentation in a 1D model we find the result
confirmed. Turbulent coagulation appears to be the key mechanism that bridges the gap
in transforming droplets into drops.

This model framework represents a powerful tool to investigate the impact of in-cloud
turbulence on the various interactions of clouds and the Earth system. The validation of
the model with observational data is currently underway.

Further plans should address the interaction of cloud microphysics with in-cloud chem-
istry. Current cloud chemical models predict a dependence of sulfate production on the
droplet size distribution. However, the droplet dynamics in existing models does not
account for the turbulence in clouds. Therefore, a focus of our research concerning the
heterogeneous chemistry in clouds will be to quantify the sulfate production of clouds
including the process of turbulent coagulation. In this context, it will be worthwhile to
implement the cloud parcel model in a more comprehensive atmospheric model, such
as a full 3D Large Eddy Simulation (LES) model, which provides the meteorological
input data for the cloud microphysics model, and includes transport and coupling with
atmospheric chemistry.
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Topography modeling in atmospheric flows using
the immersed boundary method

By I. Senocak, A.S. Ackerman {, D.E. Stevens { AND N.N. Mansour

1. Motivation and objectives

Numerical simulation of flow over complex geometry needs accurate and efficient com-
putational methods. Different techniques are available to handle complex geometry. The
unstructured grid and the multi-block body-fitted grid techniques have been widely
adopted for complex geometry in engineering applications. In atmospheric applications,
terrain fitted single grid techniques have found common use. Although these are very ef-
fective techniques, their implementation, coupling with the flow algorithm, and efficient
parallelization of the complete method are more involved than a Cartesian grid method.
Oftentimes, the grid generation can be tedious and one needs to pay special attention in
numerics to handle skewed cells for conservation properties. Researchers have long sought
for alternative methods to ease the effort involved in simulating flow over complex ge-
ometry. A good example is the work by Peskin (1977). He has developed the immersed
boundary method (IBM) to simulate blood flow in a heart/mitral valve system, where
the boundary is represented by a body force and the equations are solved on a Cartesian
grid. However, formulating a suitable body force term has proved to be a challenging
issue.

In recent years, IBM has been significantly improved. Mohd-Yusof (1997) has pro-
posed the direct forcing method in which the body force is implicitly taken into account
by reconstructing the velocity field around the immersed boundary. Essentially, this new
approach has eliminated the issue of explicit formulation of a suitable body force repre-
senting the boundary. IBM with the direct forcing approach has been further developed
by adopting higher order reconstruction schemes, and it has been successfully applied
to complex flow problems in engineering applications (e.g. flow over a truck, flow in
piston cylinder assembly and flow in a stirred tank) by Fadlun et al. (2000); Verzicco
et al. (2000); Iaccarino & Verzicco (2003). For high Reynolds number flow simulations,
IBM coupled with an adaptive mesh refinement technique has been effective to provide
the required near-wall resolution (Kalitzin & Iaccarino 2003). Adaptive mesh refinement
helps reduce the overall number of computational nodes to achieve the desired near-wall
resolution, but the problem can still be very demanding for higher Reynolds number flow
simulations.

Wall/surface modeling in LES or the wall-function formulation in Reynolds-averaged
Navier-Stokes (RANS)computations have been proposed to decrease the computational
load due to near-wall resolution. In these approaches, coarse resolution grids can be
employed, and no-slip conditions are not applied directly at the surface, because the
implied stress would be overestimated on a coarse resolution grid. Instead, stresses at
the surface are imposed as boundary conditions, alleviating the need to resolve the thin
turbulent boundary layer. If one wants to extent the IB method for topography modeling

t NASA Ames Research Center
1 Lawrence Livermore National Laboratory
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in LES of atmospheric flows, for which numerical resolutions have been poor, then it is
necessary to develop a reconstruction scheme that can take into account surface modeling.
This issue has not been addressed within the context of IBM and it is one of our main
objectives in this paper.

In what follows, we briefly describe the immersed boundary method, and apply it to
low Reynolds number laminar flow cases to test our implementation. To take into the
LES surface modeling issue within the IB method, we develop a reconstruction scheme
based on the mean logarithmic wind profile assumption near the surface. To test this new
scheme, we perform LES of a neutrally stratified atmosphere. Specifically, we compare
the results of the IB method with the new reconstruction scheme to the results of the
commonly adopted surface modeling approach, in which surface stresses are imposed as
boundary conditions.

2. Governing equations

The governing equations for LES of a neutrally stratified atmospheric boundary layer
are the filtered Navier-Stokes equations written as follows

0u; _ 0 Oou; | O(u;u;)  Op Omij
ox; R ot 8.’1}]' - ox; 8.’13j7

where turbulent stresses are defined as 7;; = w;u; — u;;, f; is the Coriolis parameter,
€ijr is the permutation tensor, 4 and p are the filtered velocity and filtered dynamic
pressure, respectively.

To solve the above governing equations, we use the LES atmospheric research code
DHARMA. The numerical method adopted in DHARMA is described in detail in Stevens
& Bretherton (1996) and Stevens et al. (2000). The governing equations are integrated us-
ing a forward-in-time projection method based on an explicit second-order Runge-Kutta
scheme (Bell & Marcus 1992). The spatial discretisation is performed on a staggered
grid. A third-order accurate upwind-biased monotonic scheme is used for the advection
terms, whereas diffusion and pressure gradient terms are discretized using second-order
accurate central differencing schemes. A direct solver (FFT) is utilized for solving the
pressure Poisson equation, and the code has been parallelized to run on various platforms
using MPL.

+ €ijn [tk — (2.1)

3. Subgrid scale turbulence modeling

Since the Reynolds number of a typical atmospheric boundary layer (ABL) flow is very
high, LES of ABL with near-surface resolution is not a practical option with current
computer resources. To alleviate this obstacle one resorts to LES with surface modeling.
For a planar surface, a common approach is to set the vertical component of the velocity
to zero, and to define the horizontal components of the turbulent stresses based on the
mean logarithmic wind profile assumption (Moeng 1984). The surface stresses can be

written as follows
2
K _
Tig = — (m—z_1> |ulus, (3.1)
Zo

where 21, u; are the distance in the vertical direction and the velocity of the first grid
point away from the surface, respectively. zg represents the roughness height. It should
be noted that, in the immersed boundary method, we do not utilize the above approach
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for surface modeling. Instead, we employ the log-law reconstruction scheme, which is
described in the next section.

Turbulent stresses that appear in equation 2.1 are modeled based on the Boussinesq
eddy viscosity assumption. As discussed in Senocak et al. (2004), in LES of ABL near-
surface models are needed to improve the predictions in the vicinity of the surface. Based
on the results of that study we employ the hybrid RANS/LES model for the present
computations. The hybrid RANS/LES model adopts the Prandtl’s mixing length model
(Prandtl 1925) near the surface and blends in with the dynamic Smagorinsky (Germano
et al. 1991) away from the surface. The resulting form of the turbulent eddy viscosity
can be written as

ve = [(1 = exp(=z/h))* - (CA?) + exp(—2/h)*(r2)’]|S], (3-2)

where z is the distance from the surface, A is the filter width, x is the von Karman
constant with a value of 0.41, and |S| is the magnitude of the strain rate tensor. The
dimensionless parameter C' is computed dynamically during the solution, making it a
function of space and time (Germano et al. 1991). In the above equation A is the altitude,
corresponding roughly to the upper edge of the surface layer. A value of 150(m) is used
for the present computations. It should be mentioned that a logarithmic velocity profile
is expected within the surface layer, which is approximately the bottom 10 percent of
the atmospheric boundary layer height for neutrally stratified conditions (100 m -200 m)
(Stull 1988).

4. Immersed boundary method
In IBM the solid boundary is represented by a body force F;. The discretized form of
the momentum equation given in 2.1 can be written as follows.

utt —y?

thz = RHS; + F;, (4.1)
where RH S; includes the pressure gradient, convective, diffusive, and Coriolis terms. F;
is the body source term that gives the desired velocity at the boundary. In the direct
forcing technique (Mohd-Yusof 1997; Fadlun et al. 2000) if the desired velocity at the
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n+1

boundary is uj;" " = V;.”H then one can write the explicit form of the body force as

vl oy
F,=—-RHS; + *———1. 4.2
i = —RHS; + (4.2)

Hence, instead of imposing the body force F; explicitly to obtain the desired velocity at
the boundary, one can impose the desired velocity and take into account the body force
implicitly. For complex geometry, the boundary is not coincident with the Cartesian grid
nodes, so one needs to reconstruct the velocity field using the values from neighboring
nodes and the desired value at the boundary.

The steps involved in applying the immersed boundary method can be summarized as
follows.

(a) Preprocessing: Determine the Cartesian cells that are cut by the boundary. Tag
the nodes as dead, fluid and cut.

(b) Predictor stage: Solve the discretized momentum equations.

(¢) Set zero velocity field on the dead nodes, and apply the reconstruction scheme on
the cut nodes.

(d) Solve the pressure Poisson equation

(e) Update the velocity and the pressure field, and impose the reconstruction on the
cut nodes.

Several reconstruction schemes have been suggested in literature (Fadlun et al. 2000;
Taccarino & Verzicco 2003). The simplest reconstruction scheme is the nearest neighbor.
For instance, if we consider a 2-D geometry, a linear interpolation can be employed in
either the x (horizontal) or the z (vertical) direction depending on the distance from the
boundary. To preserve the local maxima or the minima a bilinear inverse interpolation
can also be adopted. As depicted in the left part of figure 1, a quadrilateral element can
be constructed from the neighboring nodes and the boundary surrounding the cut node.
This quadrilateral element and the coordinate of the cut node is then mapped onto a
square element, where an area weighted average is used to interpolate the value of the
velocity at the cut node. A quadratic equation needs to be solved for this mapping, which
can be derived as follows

4 4
zp=Y mNi, yp=Y uli
i=1 i=1
1
N; = Z(l +&&)(L+mm), & ==+1,m = £1. (4.3)
Eliminating & gives a quadratic equation for 7.

an® +bn+c=0, (4.4)

Upon solution of this equation the root that lies within the mapped zone is taken as the
solution. A stable algorithm for bilinear inverse interpolation is given by Felippa (2004).
However, the extension of this method to 3-D (trilinear inverse interpolation) is not
straightforward. An iterative algorithm is needed to solve the set of equations defining
the mapping of a hexahedral element to a cubic element

For high Reynolds number flows, both the nearest neighbor and the bilinear inverse
interpolation schemes would require a very fine resolution near the boundary. The com-
putational grid should be fine enough to resolve the viscous sublayer, where the velocity
variation is physically linear. However, this is an overwhelming requirement, which is not
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practical for atmospheric flows. Instead one should consider LES of atmospheric flows
with surface modeling.

We propose the log-law reconstruction scheme for incorporating surface modeling into
the immersed boundary method. It should be emphasized that this scheme addresses
the surface modeling issue through reconstruction of the velocity field, whereas in the
commonly adopted surface modeling approach turbulent stresses are imposed at the
surface as boundary conditions. In the following, we explain the formulation of the log-
law reconstruction scheme.

The log-law for a rough surface can be written as follows (Panofsky & Dutton 1984)

— = =In(—=) (4.5)

Us K 20
where z is the distance from the surface measured along the surface normal direction, zq
is the roughness height, u, is the friction velocity, and U is the magnitude of the velocity.
Within the log-layer the friction velocity, u, is constant in the surface normal direction.
Using this property, one can write the following between two points lying on the same
surface normal direction.

U2 . l’l’L(Zz/Z())

U In(z1/20)’ (40

The above formula is based on the magnitudes of the velocity. One needs to decompose it
into velocity components in each direction (u,v,w), in order to impose the direct forcing
in equation 4.1. For instance, if we consider a neutrally stratified atmospheric boundary
layer over a planar surface, the velocity direction in the horizontal plane 8 changes with
altitude due to the rotation of the Earth. Since one has the magnitude of the velocity at
hand due to equation 4.6, § needs to be extrapolated from the fluid nodes to the cut node
lying along the same vertical direction. The direction of the velocity on the horizontal
plane is computed as follows

0 = arctan(v/u) (4.7

For simplicity, we suggest a linear extrapolation to compute 6 at the cut node. Once 6.
is determined, then horizontal components of the velocity is computed as shown below

u=Ucosb., v="Ucosl. (4.8)

The log-law reconstruction scheme in the case of a planar surface is described schemat-
ically on the right part of figure 1. In the preprocessing stage, first, the nodes are tagged
as dead, fluid and cut. Next, the magnitude of the velocity at the cut node, numbered as
1, is updated based on equation 4.6, using the information from the fluid node numbered
as 2. Then 0 at fluid nodes 2 and 3 are computed based on equation 4.7. Using 6> and 65,
a linear extrapolation gives 6;, which is then used to compute the horizontal components
of the velocity at the cut node, based on equation 4.8. Note that, the vertical component
of the velocity (w) has zero value at the boundary and a linear interpolation is used to
impose it on the cut node.

For a three dimensional complex surface the above scheme needs to be reformulated
based on normal and tangential directions to the surface. We are currently working on
extension of our scheme to complex topography.
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5. Results

In this section we, first, present results of low Reynolds number laminar flow compu-
tations adopting the linear reconstruction scheme in the IB method. Following this, we
present results of LES of a neutrally stratified atmospheric boundary layer adopting the
log-law reconstruction scheme in the IB method.

5.1. Linear reconstruction scheme

To test our implementation of the immersed boundary method, we perform simulations
of laminar flow past circular cylinders and compare our results with the available exper-
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imental and computational studies in literature. We consider flows at Reynolds number
of 20 and 40.The Reynolds number is defined as
UD

Re 5 (5.1)

where U is the upcoming freestream velocity, D is the diameter of the circular cylinder,
and v is the kinematic viscosity of the fluid. The wake behind the circular cylinder
becomes unsteady above Reynolds number of approximately 40, (Coutanceau & Bouard
1977a,b).

Figure 2 shows the time evolution of the length of the recirculation zone that forms
in the wake at Reynolds number of 20 and 40. In figure 3, the streamvise component
of the velocity is compared with both the experimental data of Coutanceau & Bouard
(1977a)and the computational data of Nieuwstadt & Keller (1973).The present results
obtained with the IB method agrees well with both the experimental and the computa-
tional data. We have also compared the results of linear reconstruction scheme with the
results of bilinear inverse reconstruction scheme. Since the results are nearly identical,
we do not include the comparisons in this study.

5.2. Log-law reconstruction scheme

To test the performance of IB method in LES of atmospheric flows, we consider a neutrally
stratified atmospheric boundary layer. We compare the results of the IB method with log-
law reconstruction scheme to the results obtained by adopting the surface-stress bound-
ary condition approach, which is described in equation 3.1. For surface-stress boundary
condtion approach, the computational domain size is 3000 m x 1500 m x 1500 m with
64 x 32 x 64 grid points uniformly distributed in x, y, and z directions, respectively. For
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immersed boundary simulations, we consider a domain height of 1687.5m with 72 grid
nodes in the vertical direction. We place the immersed boundary at a height of 187.5m
so that we have a computational domain, which is identical to the computational domain
adopting the surface-stress boundary condition approach. The flow is driven by a mean
pressure gradient that would balance a 10 ms—! geostrophic wind in the x direction.
Coriolis parameter is set equal to 10~* s~!, and the roughness parameter z has a value
of 0.1 m. A dimensionless time unit can be defined based on the Coriolis parameter(1/f).
The simulations were run over a period of 101, and statistics are collected during the
time period of last the 4f~!. Ensemble averaged vertical profiles have been obtained by
collecting data at every 6 x 10~ dimensionless units (60secs), and averaging them both
in time and in horizontal space.

In figures 4 and 5 the mean wind profile and the streamwise component of the total
and the resolved stress obtained with the commonly adopted surface-stress boundary
condition are compared with the results of IB method. Clearly, the IB method with the
log-law reconstruction is able to reproduce the results of the surface stress boundary
condition.

Figure 6 compares the spanwise components of the total stress and the velocity. The
noticable differences seen in this plot is because of the extrapolation of the velocity direc-
tion in the IB method with log-law reconstruction, given in 4.7. As discussed in Senocak
et al. (2004) the adoption of near-surface models results in non-vanishing spanwise com-
ponent of the velocity. In that respect, the IB method with log-law reconstruction does
a better job by predicting a lower value of the spanwise velocity.

Finally, we compare turbulent eddy viscosity profiles because it is an important quan-
tity in atmospheric modeling. In figure 7, we see that the IB method with log-law recon-
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struction gives results that are almost identical to results of the surface-stress boundary

condition.

6. Summary and conclusions

In this study, we have presented a Cartesian grid immersed boundary method for LES
of a neutrally stratified atmospheric boundary layer flow. The IB method is appealing
for atmospheric flow modeling because its implementation is easy and does not alter the
computational structure of the Cartesian grid code, which can involve extensive modeling
for cloud microphysics and radiation modeling.

For validation purposes, first, we have considered laminar flows over a circular cylinder
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at low Reynolds numbers and demonstrated good agreements with available experimental
and computational studies in literature. To address the surface modeling issue in LES of
ABL using the immersed boundary method, we have proposed the log-law reconstruction
scheme. This scheme enables us to employ the IB method for high Reynolds number flows
without the need for fine near-surface resolution. We have shown that the IB method with
log-law reconstruction scheme can produce results that are nearly identical to the results
obtained with the commonly adopted surface-stress boundary condition approach.

Our future work will focus on applying the IB method to atmospheric flow problems
that involve complex topography, cloud coverage and radiative energy transfer.
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1. Motivation and objectives

Large-eddy simulation (LES) is a widely used technique in atmospheric modeling re-
search, partly because of the difficulties involved in observational studies and field exper-
iments to obtain information about the turbulent structure of the atmosphere (Stevens
& Lenschow 2001). In LES, large, unsteady, three dimensional structures are resolved
and small structures that are not resolved on the computational grid are modeled. A
filtering operation is applied to distinguish between resolved and unresolved scales. Un-
resolved motions are believed to be universal, and simple models should be sufficient to
parameterize them, provided that a major fraction of the energetic large scales are re-
solved by the spatial and temporal resolution (Sagaut 2002). However, this requirement
becomes stringent to fulfill in the close proximity of the surface/wall. Traditionally, the
no-slip boundary has been referred to as “wall” in engineering context, and as “surface”
in atmospheric science context. We will use the latter terminology throughout the paper.

As the surface is approached anisotropy in turbulence structure increases and the
length scale of the flow structures diminish rapidly, requiring too fine a spatial and a
temporal resolution to numerically resolve a large fraction of the energetic scales. Hence,
fully resolved LES of atmospheric or any other wall-bounded high Reynolds number
flow would be extremely expensive in terms of computational resources. In fact, it is
this obstacle that motivates surface/wall modeling research in LES. Furthermore, the
roughness of the surface underlying the atmospheric boundary layer has always been a
complicated issue, and needs to be considered in modeling too.

In surface modeling, no-slip boundary conditions are not applied directly because the
implied stress would be overestimated on a coarse grid. The simplest surface model
that has long been adopted in atmospheric boundary layer simulations assumes that the
logarithmic law holds within the surface layer, and stresses are imposed as boundary con-
ditions at the surface(Schumann 1975; Moeng 1986). Cabot, Jimenez & Baggett (1999)
showed that such models have problems for high Reynolds number LES simulations with
coarse numerical resolution. Cabot (1997) indicated that providing accurate mean sur-
face stresses is not sufficient to overcome the overall poor predictions. He suggested that,
given a coarse numerical resolution, typical subgrid-scale (SGS) models used in LES do
not perform well to predict Reynolds stresses in the near-surface region accurately.

Boundary layer approximations have been proposed to extend the application of sur-
face models for separating flows with adverse pressure gradient, (Balaras et al. 1996;

t NASA Ames Research Center
1 University of Tasmania
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Cabot & Moin 2000). In this approach, a simplified set of turbulent boundary layer
equations, adopting a Reynolds-averaged Navier-Stokes (RANS) type eddy viscosity, are
solved on an embedded mesh near the wall. The surface stress is then calculated from the
computed velocity profile. Within this framework, Wang & Moin (1992) utilized a dy-
namically adjusted mixing length eddy viscosity, and showed that their model performs
significantly better than the simpler surface modeling approaches. Surface modeling for
LES continues to be an active area of research for high Reynolds number flow, coarse
resolution simulations. Latest research in this area focuses on incorporating suboptimal
control theory to improve the predictive capability of the surface models (Templeton,
Wang & Moin 2002).

In atmospheric boundary layer simulations, the practice has been to employ LES mod-
els away from the surface and make a transition towards ensemble-averaged (RANS)
models as the surface is approached. This idea has been adopted through different for-
mulations. For instance, Sullivan et al. (1994) proposed an eddy viscosity model in which
the so-called isotropy factor controls the transition from LES to a RANS type simu-
lation, and accounts for the anisotropy effects at the same time. Mason & Thomson
(1992) introduced a modified length scale that is a matching between the LES filter size
and the distance from the surface. Brown, Hobson & Wood (2001) suggested using a
canopy model with the aim of overcoming the difficulties in surface modeling. Tradition-
ally, canopy models have been adopted to study the effect of flow within the canopy
layer. In this approach, instead of modifying the eddy viscosity or the length scale, ad-
ditional turbulent stresses are added to the turbulent stresses that are already modeled
by the LES SGS model. Chow & Street (2002) and Kirkpatrick et al. (2003) adopted
the canopy model of Brown et al. (2001) for atmospheric boundary layer simulations,
and reported improved predictions. We will refer to these models, in which additional
stresses are added onto sugrid-scale models to improve the predictions in the vicinity of
the surface, as “near-surface” models. We reserve the term “surface model” to include
both the models for surface boundary condition and the near-surface models.

In what follows, we present two near-surface models that have found use in atmp-
spheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl’s
mixing length model (Prandtl 1925) in the vicinity of the surface and blends in with the
dynamic Smagorinsky model (Germano et al. 1991) away from the surface. We evaluate
the performance of these surface model by simulating a neutrally stratified atmospheric
boundary layer.

2. Governing equations
The governing equations for LES of a neutrally stratified atmospheric boundary layer
are the filtered Navier-Stokes equations

gzz =0, Ou; | Owi;) _ Op + €ijn fitn —

ot 81']' 61’,’
where turbulent stresses are defined as 7;; = w;u; — u;4;, f; is the Coriolis parameter,
€ijk is the permutation tensor, u and p are the filtered velocity and filtered dynamic
pressure, respectively.
The lateral boundary conditions are periodic and a stress-free condition is imposed on
the upper boundary. At the lower boundary, the vertical component of the velocity is
set to zero and horizontal components of the turbulent stresses are defined based on the

6Tij
b
6.’17_7'

(2.1)



LES of neutrally stratified atmospheric boundary layers 345

mean logarithmic wind profile assumption as follows (Moeng 1984)

2
K _
Ti3 = — (hl—z—1> |U|Uz’a (2-2)
Zo

where 21, u; and zg are the vertical spacing, the velocity of the first grid point away from
the surface, and the roughness height, respectively. This type of boundary condition for
the surface is a common practice in atmospheric modeling.

3. Subgrid-scale turbulence modeling

Turbulent stresses that appear in equation 2.1 are modeled based on the Boussinesq
eddy viscosity assumption. The Smagorinsky eddy viscosity model (Smagorinsky 1963)
is a popular approach to represent turbulent stresses

Tij = —20l2|5’|g,'j, (31)

where |S| is the magnitude of the filtered strain rate tensor, it is defined as

_ JE— = 1 [ du; ou,
151 = /2554,  Sij =5 (6:c- + 35) : (3.2)
j i

In LES, the filter width A = (dz - dy - dz)'/? is chosen as the length scale [ in the eddy
viscosity definition (equation 3.1). In the original Smagorinsky model, the dimensionless
parameter C is an empirical constant, whereas in the dynamic Smagorinsky model (Ger-
mano et al. 1991), this parameter is computed dynamically during the solution, making
it a function of space and time.

In the vicinity of the surface, the numerical resolution is generally limited and near-
surface models are adopted to model the turbulent stresses properly. We consider three
near-surface models, and provide a brief explanation of them in the following.

3.1. Mason and Thomson Model

This is an arbitrary and simple modification of the length scale in the eddy viscosity
definition given by equation 3.1. Mason & Thomson (1992) have suggested using the
following form as the length scale.

11 + 1

12 A2 (k2)?
where k is the von Karman constant with a value of 0.41, and z is the distance from the
surface.

(3.3)

3.2. Canopy Stress Model

Canopy models are usually adopted to model the structure of the flow within the canopy.
Brown et al. (2001) have suggested using them as near-surface models in the case of coarse
numerical resolution. In particular, we follow the implementation of Kirkpatrick et al.
(2003). Canopy stresses near the surface are formulated as

h
TZ
Ti3 = — Cscos | =— ) |u|uidz, 3.4
s /0 <2h)|| (3-4)

where C; is a normalizing parameter. Specifically, C is the ratio of the surface stress at
the bottom to the canopy stress at the first grid point. The canopy height h is taken to
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be twice the streamwise grid spacing (2dz). Canopy stresses are added onto the turbulent
stresses that are modeled with the dynamic Smagorinsky model.

3.3. Hybrid RANS/LES model

We adopt a hybrid RANS/LES approach as the third model. The motivation behind
this model is that the surface stress boundary conditions represent ensemble-averaged
quantities, because they are derived from the mean logarithmic wind profile. Hence, it is
more meaningful to adopt a RANS type eddy viscosity formulation near the surface.

One can analytically show that the logarithmic wind profile can be derived from the
following eddy viscosity definition (Panofsky & Dutton 1984)

Vi = KUy 2, (3.5)

where u, is the friction velocity. The above form is also identical to the following definition

v = (mz)zaa—zz] = (k2)?|S]|. (3.6)

Here, U is magnitude of the velocity vector. We apply the above definition in the vicinity
of the surface, which guarantees a logarithmic wind profile, and switch to the dynamic
Smagorinsky model away from the surface with the help of a blending function. This
hybrid RANS/LES model can be written as

ve = [(1 - exp(=z/h))* - (CA?) + exp(—2/h)*(r2)’]| S| (3.7)

Following the suggestion of van Driest (1956) an exponential form is selected as the blend-
ing function. Here h is the altitude, where the logarithmic wind profile is not expected
further. As a rule of thump, a logarithmic velocity profile is expected within the surface
layer, which is the bottom 10 percent of the atmospheric boundary layer height (100 m
-200 m) (Stull 1988). h = 150m is used for the present computations.

4. Numerical schemes

We use the LES atmospheric research code (DHARMA) for the present simulations.
The numerical method adopted in DHARMA is described in detail in Stevens & Brether-
ton (1996) and Stevens et al. (2000). The governing equations are integrated using
a forward-in-time projection method based on an explicit second-order Runge-Kutta
scheme (Bell & Marcus 1992). The spatial discretization is performed on a staggered
grid. A third-order accurate upwind-biased monotonic scheme is used for the advection
terms, whereas diffusion and pressure gradient terms are discretized using second-order
accurate central differencing schemes. A direct solver (FFT) is utilized for solving the
pressure Poisson equation, and the code has been parallelized to run on various platforms
using MPI.

5. Results

In this section, we present results from the simulation of neutrally stratified atmo-
spheric boundary layer. The computational domain size is 3000 m x 1500 m x 1500
m with 64 x 32 x 64 grid points in x, y, and z directions, respectively. In the vertical
direction, the grid points are clustered exponentially near the surface, where the first
grid point for the horizontal component of the velocity is located at 4 m from the sur-
face. The flow is driven by the Coriolis force that would balance a 10 ms—! geostrophic
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wind in the x direction. Coriolis parameter is set equal to 10~* s~!, and the roughness
parameter 2o has a value of 0.1m. A dimensionless time unit can be defined based on the
Coriolis parameter(1/ f). The simulations were run over a period of 10f !, and statistics
are collected during the time period of last the 4f~!. Ensemble averaged vertical profiles
have been obtained by collecting data at every 6 x 102 dimensionless units (60secs),
and averaging them both in time and in horizontal space.

Andren et al. (1994) compared the performance of different LES computer codes to
simulate a neutrally stratified atmospheric boundary layer. They concluded that results
were more sensitive to the SGS model in the lower third of the boundary layer, and
commonly used SGS models have failed to reproduce the logarithmic wind profile in the
vicinity of the surface. Hence, satisfying the logarithmic wind profile near the surface has
become one of the measures of good performance for an SGS model.

Figure 1 shows a comparison of the mean wind profiles for all the models considered
in the present study. When no near-surface model is used, the dynamic Smagorinsky
model produces an erroneous profile. This indicates that providing only the surface stress
boundary condition is not sufficient to model the SGS motions near the surface in the
case of high Reynolds number and coarse numerical resolution. This observation is in
agreement with the findings of Cabot et al. (1999). It should be noted that the erroneous
profile is not surprising because the essence of the dynamic Smagorinsky model is based
on resolving the inertial subrange. This has not been satisfied with the current coarse
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FIGURE 2. Comparison of streamwise component of the total (left) and resolved (right) stress.
- : no near-surface model, : hybrid RANS/LES model, —— — : canopy stress model,

: Mason-Thomson model

resolution. Hence, SGS models need augmentation to represent the unresolved scales near
the surface.

The near-surface models considered in the present study, namely, Mason-Thomson
model, the canopy stress model and the hybrid RANS/LES model are formulated to
parameterize the unresolved scales near the surface. Both the canopy stress model and the
hybrid RANS/LES model adopt the dynamic Smagorinsky model away from the surface,
whereas the Mason-Thomson model adopts the original Smagorinsky model. As seen from
figure 1, results obtained from these three near-surface models are much closer to the log-
law profile. However, considerable differences exist among them. The best agreement with
the log-law near the surface is achieved with the hybrid RANS/LES model, whereas the
Mason and Thomson model gives the worst agreement. The hybrid RANS/LES model has
the closest agreement, because the length scale is taken to be the distance from the surface
in the model, which is known to give the log-law analytically. The canopy stress model
follows the log-law close to the surface, but a significant deviation is observed further
from the surface. This indicates that, canopy stresses should be distributed over a larger
distance from the surface. We reiterate that, based on field experiments, a logarithmic
velocity profile is expected in the surface layer, which is approximately the bottom 10
percent of the atmospheric boundary layer height (100 m -200 m).

The streamwise ((ww/u2)) component of the total and resolved turbulent stress profiles
are compared in figure 2. By total stress, we mean the resolved turbulent stresses plus the
modeled SGS turbulent stresses. As seen from this plot, simulations with surface models
predict an almost linear variation of the total turbulent stress in agreement with surface
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similarity theory (Garratt 1992). However, without a near-surface model, the dynamic
Smagorinsky model does not predict a linear variation of the total turbulent stress and
produces wiggles at the surface, indicating the need for near-surface modeling.

The resolved turbulent stresses are also shown in figure 2. Within the lower one fourth
of the boundary layer, a large range of turbulent scales are modeled and not resolved
with the hybrid RANS/LES model, whereas other surface models are effective only within
the lower one tenth of the boundary layer. The extent of RANS modeling in the hybrid
RANS/LES model is adjustable through the value of h in equation 3.7. We have found
that h = 150m is reasonable in terms of satisfying the logarithmic wind profile in accor-
dance with experimental observations.

The differences among the three surface models are more pronounced in the spanwise
((v'w' /v2)) component of the total stress as shown in 3. This spanwise component of the
total stress is generated due to the rotation of the Earth. The variation of the velocity
vector with height is known as the Ekman spiral (Stull 1988).

As can be seen from figure 4, the spanwise component of the velocity is also affected
because of differences in the distribution of the spanwise component of the total turbulent
stress. With all three surface models, we see that the spanwise component, of the velocity
does not vanish at the top, whereas it vanishes in the case of the dynamic Smagorinsky
model without a near-surface model. Apparently, nonvanishing spanwise velocity at the
top is an outcome of employing the surface models. Since ensemble averaged quantities
are obtained near the wall, fluctuations of the velocity field are damped due to the action
of turbulent eddy viscosity or canopy stresses, effectively resulting in a laminar flow field.
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As a result, this ensemble averaged region acts like an artificial boundary layer for the
flow field away from the surface that is modeled in the LES sense. Baggett (1998) have
reported similar issues in LES of channel flow.

We present turbulent eddy viscosity profiles in figure 5. Away from the surface, iden-
tical profiles are obtained with the hybrid RANS/LES model and the canopy stress
model. Near the surface, the eddy viscosity levels are much lower with the canopy stress
model. This is because the model modifies the stress terms but not the eddy viscosity.
On the other hand, eddy viscosity level is much higher near the surface with the hybrid
RANS/LES model. With such high levels of eddy viscosity, turbulent motions near the
surface are dampened, resulting in an ensemble averaged velocity field. Among all mod-
els, the Mason-Thomson predicts higher levels of eddy viscosity away from the surface,
because it adopts the original Smagorinsky model in that region.

6. Summary and conclusions

In this study, we have performed large-eddy simulations of a neutrally stratified at-
mospheric boundary layer. Particularly, we have assessed the performance of different
near-surface models in predicting the mean flow structure. The surface of our atmo-
sphere is always rough and typical numerical resolutions that are utilized in atmospheric
boundary layer modeling are too coarse near the surface to perform well-resolved large-
eddy simulations. This necessitates additional modeling in the vicinity of the surface to
take into account the unresolved turbulent flow, covering a large range of scales. We have
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considered the near-surface models of Mason & Thomson (1992), Brown et al. (2001) and
also suggested a hybrid RANS/LES model that blends Prandtl’s mixing length model
with the dynamic Smagorinsky model. We have also considered the dynamic Smagorin-
sky model with no near-surface model to highlight the need for surface modeling in the
case of coarse numerical resolution.

Off all the near-surface models considered, the hybrid RANS/LES model shows better
agreement with mean logarithmic wind profile. In the canopy stress model, it appears that
surface stresses should be distributed to a larger distance from the surface to improve the
predictions. The downside of adopting any of the near-surface models is that the spanwise
component of the velocity vector does not vanish at the top of the computational domain.
For the current numerical resolution with the hybrid RANS/LES model, the contribution
from RANS modeling is effective on about the lower one fourth of the domain. A finer
numerical resolution might help confine the RANS contribution very close to the surface
and get better predictions at the same time.

Although comparable predictions can be obtained by either adopting the hybrid RANS/LES
or the canopy stress model, the hybrid RANS/LES model has the advantage of easy im-
plementation. In a parallel effort (Senocak et al. 2004), we are implementing the immersed
boundary method in DHARMA. We find that it is much more convenient to implement
the hybrid RANS/LES model to simulate flow over topography with the immersed bound-
ary method because only the eddy viscosity term needs modification. However, it might
not be straightforward to adopt the canopy stress model in Cartesian grid techniques for
complex topography simulations.
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Velocity field decomposition in 3D numerical
simulations of solar turbulent convection

By D. Georgobiani, N.N. Mansour, A.G. Kosovichev {, R.F. Stein
AND A. Nordlund q

1. Motivation and objectives

Recent achievements in helioseismic observations, in particular, ground-based GONG
(Hill et al. 1994) and space mission SOHO/MDI (Scherrer et al. 1995), provide large
amounts of data about the structure and dynamics of the Sun. These data impose ob-
servational constraints on numerical and analytical models of turbulent convection, dif-
ferential rotation, large-scale circulation etc., therefore serving a purpose of testing and
calibrating these models. In turn, these models are important for explaining the exciting
helioseismic observations and predicting new effects. Therefore it is important to develop
the most accurate and realistic models of solar convection and oscillations in order to
obtain a clarified picture of the excitation of solar oscillations by turbulent convection
and the interaction between turbulence and oscillations on the Sun. These models can be
applied to other stars and provide predictions of properties of stellar oscillations, which
are important for planned NASA asteroseismology space missions, or to the data from
the Kepler mission (Borucki et al. 2003).

Realistic 3D numerical models represent a powerful tool for this investigation, because
they do not suffer from simplifying assumptions and free parameters common for their
analytical counterparts, yet they render the underlying physical picture of a phenomenon
rather tractable. We pursue several goals while implementing numerical models. One of
the aspects of our investigation is to use realistic simulations of the convective zone to
better understand the interactions between mean flow fields, turbulence and acoustics.

Three-dimensional time dependent simulations of solar convection are becoming in-
creasingly more realistic. Simulations of the shallow upper layer of the solar convec-
tion zone by Stein & Nordlund (cf Stein & Nordlund (2000) and references therein)
demonstrate excellent agreement with existing analytical theories and observations. For
instance, there is a remarkable correspondence between the simulated and observed pro-
files of weak and intermediate strength photospheric Fel and Fell lines (Asplund et al.
2000a, Asplund et al. 2000b); also, comparison of oscillation spectra in the simulated and
solar data from SOHO/MDI by Georgobiani et al. (2004), as well as the rates of stochas-
tic energy input to the low-degree solar modes in the simulations and GOLF observations
(Roca Cortes et al. 1999) show a good agreement (see Stein & Nordlund (2001), Fig 7).

The goal of this paper is to develop a technique for decomposing the simulated turbu-
lent velocity field into its potential and rotational components. According to the funda-
mental theorem of vector analysis, any well-behaved vector field has a unique representa-
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tion, to within constant vectors, as a sum of a potential field and a solenoidal (rotational)
field,

‘7 = ‘7P + vRJ (11)
where
Vp=V¢, Vgp=Vxd. (1.2)

For these fields, the following relations hold by definition:

VxVp=0, V-Vp=V-V; V-Vg=0, VxVzg=VxTV. (1.3)

Roughly speaking, all sources and sinks of a given field V are collected in Vp, whereas all
its vortices appear in VR. This formalism, also called the Helmholtz-Hodge decomposi-
tion, is widely used in computational fluid dynamics, because it helps to better visualize
complex flows, to recognize their important features, to describe vector fields and study
their topology; but it has never been applied before to the 3D numerical simulations of
solar convection.

We use flow fields from the 3D hydrodynamic code by Stein & Nordlund for our
example of separation of the mean field into the rotational and potential components
(see Nordlund & Stein (1990), Stein & Nordlund (2000) and references therein).

2. Vorticity and divergence

In an attempt to decouple turbulent and acoustic components, we look at two char-
acteristics of the mean velocity field - its vorticity and divergence - in the data obtained
with the numerical simulations of Stein & Nordlund. Vorticity |&| = |V x | is con-
centrated primarily in strong, fast, turbulent downdrafts, formed in intergranular lanes,
whereas flow divergence d = V-4 is predominantly concentrated in smooth, slow, laminar
upflows.

Recent theories, supported by observations, suggest that excitation of solar oscillations
originates in the intergranular lines where turbulent motions are particularly strong. As
a first step towards a separation of the acoustic signal from turbulence, we look at the
temporal power spectra of simulated horizontally averaged vertical velocity u,, divergence
d and enstrophy |w?| signals (Fig 1). The divergence signal shows prominent, resonant
acoustic modes. It is very similar to the vertical velocity spectrum, but somewhat flatter
at higher frequencies. Enstrophy contains mostly background stochastic component, with
no resonant modes, except for the first mode peak. This suggests some nonlinear coupling
between the divergence and vorticity signals at a particular frequency.

3. Velocity field decomposition

Without loss of generality, we can split the mean velocity field into a potential and
rotational components:

Ui = €ijkWhj + i = uf +uj (3.1)
We take divergence of the above, getting:
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FIGURE 1. Normalized power spectra of radial modes in velocity (solid line), its divergence
(dashed line) and enstrophy (dotted line), scaled arbitrarily to facilitate feature recognition.
Divergence profile is similar to velocity, although it is flatter at higher frequencies. Enstrophy
shows mostly the background noise, with weak first mode.

i = Ui = up; (3.2)

and then solve the resulting Poisson equation to obtain the potential velocity component.
Then, the rotational component is calculated as a difference between the total velocity
and its potential component.

We apply this decomposition to the simulated velocity field. Examples of the potential
and rotational components of the flow field are shown as vertical slices through the sim-
ulation domain in Fig 2 and as horizontal slices in Fig 3. The total and the rotational
velocity slices closely resemble each other visually, therefore we do not present the total
velocity pictures. From this, one can conclude that the rotational velocity component
is dominant, whereas the potential component is rather weak and featureless. This con-
clusion is reinforced by the comparison of spatial energy spectra of the three velocity
components (Fig 4): the energy content is much lower in the potential velocity compo-
nent, and it peaks at lower spatial wavenumber (larger characteristic spatial scale) than
the vortical (or total) velocity with its dominant sharp small-scale turbulent features.
We study different aspects of the velocity decomposition, for instance, temporal power
spectra of different components. Our results show that the potential velocity component
displays prominent acoustic modes, whereas the rotational component mostly contributes
to the characteristic slope of the background noise, with no mode signal (Fig 5). In the
last picture, we plot nonradial power spectra, because the horizontally averaged (radial)
rotational velocity component is zero.
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FIGURE 2. Vertical slices of the potential velocity (left panel) and the rotational velocity (right
panel) at a fixed arbitrary horizontal coordinate. Potential component looks structureless, while
rotational component, similarly to the total velocity, shows strong turbulent downdrafts. The
magnitudes change from smallest (light) to largest (dark).
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FIGURE 3. Horizontal slices of the potential velocity (left panel) and the rotational velocity
(right panel) at the visible surface. There are no sharp features in the potential component,
while the rotational component, like the total velocity, exhibits sharp intergranular turbulent
features. Black is for largest, white is for smallest magnitudes.

4. Summary and future plans

We have simulated the turbulent velocity field of solar convection using Stein & Nord-
lund 3D code, and decomposed it into a potential and a rotational component. We have
analyzed spatial and temporal spectra of these components. We have found that the ki-
netic energy content is higher in the rotational velocity component, and that the potential
component can be treated as a small perturbation of the total flow field, in agreement
with earlier findings (cf Nordlund & Stein 2001). The temporal power spectrum of the
potential component shows distinct acoustic mode peaks, while the rotational compo-
nent spectrum primarily consists of convective background noise, dominating at very low
frequencies and quickly decaying at higher frequencies. This suggests that in the poten-
tial component, the power is concentrated in the acoustic resonant modes trapped in
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tial component, and its characteristic spatial scales are larger than for the rotational or total
velocities.

the upper convection zone. We continue investigating the relationship between acoustics
and turbulence in the simulated velocity fields, trying to address the problem of energy
equipartition between turbulence and oscillations, and to understand the mechanism of
generation of acoustic waves by stellar turbulence.

REFERENCES

ASPLUND, M., NORDLUND, A., TRAMPEDACH, R., ALLENDE PRIETO, C. & STEIN,
R. F. 2000a Line formation in solar granulation. I. Fe line shapes, shifts and asym-
metries. Astronomy € Astrophysics, 359, 729

AsPLUND, M., LupwiG, H.-G., NORDLUND, A., & STEIN, R. F. 2000b The effects of
numerical resolution on hydrodynamical surface convection simulations and spectral
line formation. Astronomy € Astrophysics, 359, 669

Borucki, W. J., KocH, D., BAsrI, G., BRowN, T., CALDWELL, D., DEVORE, E.,
DunHAM, E., GAUTIER, T., GEARY, J., GILLILAND, R., GoUuLD, A., HOWELL, S.
& JENKINS, J. 2003 Kepler mission: a mission to find Earth-size planets in the hab-
itable zone. Proceedings of the conference on Towards other Earths: DARWIN/TPF
and the search for extrasolar terrestrial planets, 22-25 April 2003, Heidelberg, Ger-
many

GEORGOBIANI, D., STEIN, R. F., NORDLUND, A., KOSOVICHEV, A. G., & MANSOUR,
N. N. 2004 High degree solar oscillations in 3D numerical simulations. Proceedings of
the SOHO14/GONG 2004 workshop ”Helio- and asteroseismology: towards a golden
future” from July 12-16 2004 at New Haven CT (USA)



360D. Georgobiani, N. N. Mansour, A. G. Kosovichev, R. F. Stein, & A. Nordlund

Normalized Power

Il L L L Il L L L Il

O 2 4 §) 3
Frequency (mHz)

FIGURE 5. Non-radial power spectra of different velocity components. Total (solid line) and
potential (dashed line) velocity show the oscillation mode peaks; they are very similar, except
at low frequencies. Rotational (dotted line) velocity signal represents the background convective
noise. The curves are smoothed over Av = 0.1 mHz.

Hivy, F., FISCHER, G., GRIER, J., LEIBACHER, J. W., JONES, H. B., JONES, P. P,
KuUPkE, R. & STEBBINS, R. T. 1994 The Global Oscillation Network Group site
survey. 1: Data collection and analysis methods. Solar Physics, 152, 321

NorDLUND, A. & STEIN, R. F. 1990 3-D simulations of solar and stellar convection
and magnetoconvection. Computer Physics Communications, 59, 119

NORDLUND, A. & STEIN, R. F. 2001 Solar oscillations and convection. I. Formalism for
radial oscillations. Astrophysical Journal, 546, 576

RocaA CorTEs, T., MONTANES, P., PALLE, P. L., PEREZ HERNANDEZ, F., JIMENEZ,
A., REcuro, C., & THE GOLF TeAM 1999 Low 1 solar p-mode oscillations pa-
rameters and convection. ASP Conf. Ser. 173: Stellar structure: theory and test of
convective energy transport, 305

SCHERRER, P. H., BoGgArT, R. S., BUsH, R. I., HOEKSEMA, J. T., KOSOVICHEV,
A. G., ScHoU, J., ROSENBERG, W., SPRINGER, L., TARBELL, T. D., TITLE,
A., WorrsoNn, C. J., ZAYER, I. & MDI ENGINEERING TEAM 1995 The Solar
Oscillations Investigation - Michelson Doppler Imager. Solar Physics, 162, 129

STEIN, R. F. & NoORDLUND, A. 2000 Realistic solar convection simulations. Solar
Physics, 192, 91

STEIN, R. F. & NORDLUND, A. 2001 Solar oscillations and convection. II. Excitation
of radial oscillations. Astrophysical Journal, 546, 585



Center for Turbulence Research 361
Annual Research Briefs 200/

High degree oscillations in 3D numerical
simulations of solar convection

By D. Georgobiani, R.F. Stein {, A. Nordlund }, A.G. Kosovichev
AND N.N. Mansour

1. Motivation and objectives

High-degree acoustic modes probe shallow solar layers, where convection drives oscil-
lations. We study these oscillations by means of the three-dimensional hydrodynamic
code of Nordlund & Stein (1990). The code simulates a small part of the solar convection
zone, and is therefore suitable for studies of high degree modes. In our previous work
Georgobiani et al. (2000), we looked at the modes with angular degree £ = 740. However,
these modes in the Sun are reflected at 9-10 Mm beneath the surface, but the simulated
domain was too shallow to include their lower turning points. As a result, the mode fre-
quencies did not match the observed ones, although the velocity amplitudes were quite
similar.

In this work, we study modes of higher degree, £ = 1480. These modes have their lower
turning points around 3 Mm, and therefore their eigenfunctions fit inside the simulated
box. We compare these modes with the observed oscillations of the same angular degree.
We find a good match in their power spectra, except for the noise level at very low fre-
quencies. Frequencies, amplitudes and widths of the modes match rather well. Similarity
of mode line asymmetries and widths in observations and simulations suggests that mode
excitation and damping mechanisms are correctly captured in the simulations.

We also compare spectra of full-disk and high-resolution solar observations, trying to
establish a link between power spectral densities in observational data sets of different
spatial resolution, in order to facilitate their comparison with the simulated data.

This work is organized as follows: Section 2 describes the simulation code; Section 3
presents the two sets of the SOHO /MDI data analyzed in our work; Section 4 outlines the
procedure for calculating the power spectra; Section 5 is devoted to the results, followed
by a discussion and a description of our future plans.

2. Numerical model

To simulate a small region of the upper solar convection zone, we use the 3D radiative—
hydrodynamic (RHD) code by Stein and Nordlund (for a detailed description, see Stein &
Nordlund (2000) and references therein). The code solves a complete system of hydrody-
namic equations. It has a detailed radiative transfer treatment, thus properly represents
both convection and radiation in the upper convection zone and the photosphere. The
detailed radiative model in the code is very important for studies of solar oscillations.
The computational domain is 3 Mm deep, starting from near the temperature minimum
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at 0.5 Mm above the 7 = 1 surface, and extending to 2.5 Mm beneath it. The horizontal
area of the domain is 6 Mm x 6 Mm. The horizontal resolution is 100 km, while the
vertical one varies from 35 to 70 km, depending on the height (superadiabatic region
is resolved better than the convective zone). The number of mesh points was 63 x 63
x 63. Three-dimensional snapshots of several physical properties (velocity, temperature,
density, internal energy) are recorded every 30 seconds, and the total simulation sequence
spans 72 hours of solar time.

To compare our results with SOHO/MDI observations, for each time step we extract
2D horizontal planes of the vertical velocity component at approximately 200 km above
the visible surface (7 = 1). This level approximately corresponds to the height of the Nil
6768 line formation, in which the observations are taken.

3. Observed velocity data

The SOHO/MDI Doppler velocity data used for comparison are simultaneous high-
resolution (0.6 arcsec/pixel) and full-disk (2 arcsec/pixel) images taken on June 14 - 16,
1997. The high-resolution sub-region of 62.5 Mm x 62.5 Mm (128 x 128 pixels) was
tracked with solar rotation for 2.5 days. The full-disk data spans 3 days. In both data
sets, the time interval between the images is 1 minute. The high-resolution data represent
a patch of the solar surface, therefore, after removing the solar rotation, we can apply
the same spectral analysis as the one we use for the simulated velocity data. The full-
disk data underwent spatial filtering in terms of spherical harmonic transform, and are
available for different values of angular degree ¢, from 0 to 1000, and corresponding
azimuthal orders m = —/,...,£. We used these data for £ = 740, to compare with the
high-resolution data, and also for £ = 370, to see how the oscillation power might scale
with angular degree.

4. Power spectra calculations

To calculate the velocity power spectrum for the simulated data, we perform spatial
filtering using harmonic functions of horizontal coordinates on the 2D surfaces of vertical
velocity at each time step, take Fourier transform in time and multiply by its conjugate.
The horizontal spatial filtering allows us to extract modes corresponding to a given
angular degree. Horizontal averaging extracts radial modes, while filtering with spatial
sines and cosines of different horizontal wavenumbers gives non-radial modes. For waves
with horizontal wavelength L = 6 Mm (the box size), the horizontal wavenumber is
kp = 2m/L ~ 1 Mm~!, and their angular degree is £ ~ k,R ~ 740, where R is the
solar radius; for waves with L = 3 Mm (half the box size), k; ~ 2 Mm~!, and £ ~ 1480
(for more details, see Georgobiani et al. (2000)). These are the modes we are especially
interested in, because we expect them to be captured within the simulated domain.

In non-radial cases, we get the spectra for four spatial filters (sine and cosine in x
and y direction), and then perform summation over these spectra. We remove the solar
rotation trend from the high-resolution SOHO/MDI data and perform similar spectral
analysis. For the full-disk data, we also remove the effect of solar differential rotation for
different m by imposing frequency shifts according to the solar rotation law, and then
sum over m = 2¢ + 1 resulting spectra. In addition, we multiply all power spectra by the
relevant time duration in seconds. This arises from the definition of a temporal Fourier
transform; the result represents so called power spectral density, and it takes care of
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FIGURE 1. Power spectral density of vertical velocity in simulations (dots) and Doppler
velocity in full disk observations (solid line) for angular degree ¢ = 740.

different time duration and cadence between various data. We call the resulting power
spectral densities, ” power spectra”, for brevity. The power spectra are also multiplied by
an area over which the velocity measurements take place; this comes from the definition
of a spatial Fourier transform. The result represents the oscillation power in this area.

5. Results

We start by reproducing the results of our earlier work (Georgobiani et al. (2000)).
Figure 1 shows two power spectra of £ = 740 modes, from simulations and the full-disk
observations. One can see that the observed and simulated modes have similar ampli-
tudes, but different mode structure, frequencies and mode widths. Also, the simulated
power falls off more rapidly at high frequencies than the observed one.

Next, we compare the simulated power spectra with the high-resolution SOHO/MDI
data. The results of comparison between the simulated and observed power spectra for
¢ = 740 are presented in Fig 2, and for £ = 1480 in Fig 3. Fig 2 is reminiscent of
our earlier results (Fig 1). Fig 3, for £ = 1480, shows remarkable similarity between
simulations and observations in mode frequencies, amplitudes and widths, except for
differences in the background noise level at low frequencies, away from modal structure.
It is worth mentioning that the leftmost peak in all figures corresponds to the surface
gravity (f) mode, while the others correspond to acoustic (p) modes. Frequencies of f-
modes are independent of the depth of a resonant cavity, this is why even for £ = 740
the f-mode peaks have the same frequency in simulations and observations. We sum over
four individual spectra, because all of them contribute to the total power. In the full-disk
data, we also need to sum over all m spectra when calculating the total power.

In Fig 4, we compare the two sets of our observational data, namely, high-resolution
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FIGURE 2. Power spectral density of vertical velocity in simulations (dots) and Doppler velocity
in high-resolution observations (solid line) for angular degree £ = 740. Amplitudes are similar,
but frequencies and mode widths differ.
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FIGURE 3. Power spectral density of vertical velocity in simulations (dots) and Doppler veloc-
ity in high-resolution observations (solid line) for angular degree £ = 1480. There is a good
correspondence between the two spectra, except at low frequencies.
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FIGURE 4. Power spectral density of Doppler velocity in the full-disk (solid line) and
high-resolution (dots) observations for £ = 740. Background and mode amplitudes are lower
in the full-disk data, possibly because of the broad modulation of the high-resolution spectrum
by leaking modes of various £.

and full-disk measurements, for £ = 740 (remember that we do not have £ = 1480 full-disk
data because of insufficient resolution of the full-disk MDI images). We perform similar
comparison for £ = 370 in Fig 5. The overall amplitudes of these spectra match rather
well. The high-resolution spectra are much noisier than the full-disk spectra, because
there are only four individual spectra to sum over, comparing to the superposition of
2¢ +1 = 1481 spectra in the full-disk data (cf also Fig 1). Averaging many spectra for
individual m significantly decreases the noise level.

Finally, in Fig 6, we compare the two sets of full-disk spectra for £ = 370 and 740. In
this case, the background level became similar after the power spectra were multiplied by
the inverse squared wavelength of the modes. Note that regardless of scaling, the mode
amplitudes with respect to the background are somewhat smaller for larger /.

6. Discussion

We find that for fully captured modes where the lower turning point is located inside
the simulation domain, the simulated and observed vertical velocity power spectra are
very similar, with similar amplitudes and line widths. Solar acoustic mode amplitudes
are directly proportional to the excitation rate and inversely proportional to the mode
damping rate. It has been shown by Stein & Nordlund (2001) that the simulated ex-
citation rates are similar to the observed rates. The close match of the simulated and
observed amplitudes, and especially mode line widths, suggests that the mode damping
rates are also modeled properly by our simulation code, thus one can study the damping
effects using the simulation data.
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FIGURE 5. Power spectral density of Doppler velocity in the full-disk (solid line) and
high-resolution (dots) observations for £ = 370.
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Comparing the observed power spectra from high-resolution and full-disk data (Figs 4
and 5), we notice a broad overall peak in the high-resolution data (the mode peaks seem
to be raised above the background), which is absent in the full-disk spectrum. The high-
resolution spectrum calculated for a small area contains all the modes from radial to high
degree, and the broad peak results from a superposition of all these modes. Apparently,
the spherical transform method singles out individual £ modes better, although some
inevitable leakage of neighboring modes is always present. In the simulation box, the
horizontal boundaries are periodic, and thus the modes are far more discrete than in the
patch of the real Sun.

Scaling of the power spectra of the full-disk data at different ¢ (Fig 6) with the square
of the corresponding wavelength and resulting similarity between their backgrounds sug-
gests that the background noise amplitudes (but not necessarily the mode amplitudes)
of different ¢ scale with the area occupied by oscillations of a particular degree.

7. Future plans

We have compared the simulated and observed vertical velocity power spectral densities
for solar oscillations of different angular degrees. We have found that there is a very good
agreement between the oscillation frequencies and mode line widths when the mode
radial eigenfunctions are completely contained in the simulation domain. These results,
together with earlier findings about the similarity between the observed and simulated
mode excitation rates, enable us to study excitation and damping mechanisms in more
details. We have shown that the oscillation amplitudes in the observed and simulated
data can be compared directly. In the future, similar simulations will be used to predict
oscillation amplitudes and lifetimes for other stars.

Also, we have found that the power spectra for modes of different angular degree
within the same data sets scale with the inverse square of their characteristic horizontal
wavelength. This result is particularly prominent for the full disk solar data. It also holds
for the low frequency part of the simulated power spectra, while the high-resolution
power spectra do not show a clear scaling. We plan to investigate the cause of this
relation between the spectra of different angular degree.
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Thermal diffusivity in the SGS modeling for solar
convection simulations using the ASH code

By Y.-N. Youngi{, M. Miesch{ and N. N. Mansour

1. Motivation and objectives

The turbulent solar convection zone has remained one of the most challenging and
important subjects in physics. Understanding the complex dynamics in the solar con-
vection zone is crucial for gaining insight into the solar dynamo problem. Many solar
observatories have generated revealing data with great details of large scale motions in
the solar convection zone. For example, a strong differential rotation is observed: the
angular rotation is observed to be faster at the equator than near the poles not only
near the solar surface, but also deep in the convection zone. On the other hand, due
to the wide range of dynamical scales of turbulence in the solar convection zone, both
theory and simulation have limited success. Thus, cutting edge solar models and numer-
ical simulations of the solar convection zone have focused more narrowly on a few key
features of the solar convection zone, such as the time-averaged differential rotation. For
example, Brun & Toomre (2002) report computational finding of differential rotation in
an anelastic model for solar convection. A critical shortcoming in this model is that the
viscous dissipation is based on application of mixing length theory to stellar dynamics
with some ad hoc parameter tuning.

We have implemented the Smagorinsky-Lilly subgrid scale model into the ASH (anelas-
tic spherical harmonic) code. In this report we illustrate how this subgrid scale model
works in terms of recovering differential rotation in the solar convection zone. In partic-
ular we elucidate the role of thermal diffusivity in solar convection, where the molecular
thermal diffusivity is much larger than the molecular viscosity. Readers are referred to
(Clune et al. 1999) and (Miesch 1998) for a detailed description of the ASH code. This pa-
per is organized as follows. In §2 we briefly formulate the anelastic system that describes
the solar convection. We also formulate the Smagorinsky-Lilly SGS model for unstably
stratified solar convection. In §3 we present some data diagnosis, such as the energy
balance and angular momentum balance in the simulations. Also in §3 we illustrate by
example how the thermal diffusivity can play an important role in terms of the differen-
tial rotation in the solar convection zone, and we will also provide some conclusions and
future directions.

2. The anelastic equations of motions and the Smagorinsky-Lilly SGS model
2.1. Anelastic equations

In the solar convection zone, the depth extends over many density scale heights and thus
the effects of stratification need to be captured despite the fact that acoustic timescales
are much shorter than the large-scale convection timescales. An appropriate approach is

t Dept. of Mathematical Sciences, NJIT, Newark, NJ, 07102
1 High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado,
80301
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to filter out sound waves while maintaining the density stratification, namely the anelastic
approximation first proposed by Gough (1969) and later adapted to the solar convection
zone by Gilman & Glatzmaier (1981). In stellar models, a fluid layer is unstable if the layer
is superadiabatic. The degree of superadibaticity is quantified as (Gilman & Glatzmaier

1981)
e=-2 (g_) , (2.1)
P 0

where d is the depth of the convection zone, Cp the specific heat capacity at constant
pressure, s the entropy, and r the radial coordinate. The entropy gradient is calculated
at some fiducial level in the convection zone. In the sun, the departure from adiabaticity
in the convection zone is extremely small (Christensen-Dalsgaard et al. 1993),

e <107 (2.2)

If we assume that the velocity in the horizontal (transverse to gravity) directions is mostly
driven by pressure gradients, the coupling between vertical and horizontal velocities leads
to the following relationship between the convection velocity v and sound speed c;

Mzcﬁ~\/2<<1, (2.3)
8
where M is the Mach number of the flow.

The basic idea in the anelastic approximation is to expand the variables in terms of
the small parameter €, and collect terms of the zeroth and first orders. As is usually
found in perturbation theory, the zeroth order equations describe the basic state, which
remain stationary over timescales at which the first order variables vary. The fundamental
equations are the compressible, stratified Navier-Stokes equations in a rotating reference
frame

Os 1 2

p(--)a 4+ pOv-Vs=-V . -q+2vp €ij€ij — g(v . V) - pE, (25)
op _
% 3 =0 29

where s is the entropy, © is the temperature, and £ is the nuclear energy generation rate.
The viscous stress D is defined as

1
D= 2p1/ (eij - E(V . V)(Si]’) , (27)
and ¢ is the composite non-convective heat flux, defined as

g = —kpOVs — k,pCpVO. (2.8)

and the various transport coefficient such as the viscosity v, thermal diffusion , and
radiative thermal diffusion ., are assumed to be functions of the radial coordinate only.

Upon substituting the variables expanded in terms of the small parameter €, at ze-
roth order we obtain the hydrostatic equation. Denoting the zeroth order terms with a
subscript 0, the equations at the leading order are
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OF
=7 +A=—pog, (2.9)

or
Py = Rpo©o, (2.10)
where A is the radial gradient of a mean turbulent pressure
A= {([po(v-V)v—=V-D—2p5(v x Qo)]y), - (2.11)

The angular brackets in Equation (2.11) denote horizontal averages, and the square
brackets denote the radial component of the enclosed vector. We evaluate A only as we
update the reference state (denoted with a subscript 0).

At the next order, we obtain the anelastic equations for compressible, stratified fluids

62‘;" +po(v-V)v=—VP+V -D+pg+2p0(vxD)+A#, (212)

po(%% + poOov - V(sg +5) = V- (kpg©OoV (so + 5) + krpoCpV (09 + O))
+2upo (e,,-eij _ é(v - v)2) ~ o, (2.13)
V- (pov) =0, (2.14)

and

p P (€] P s
rP_Z_2_ 2 _ 5 2.15
po P ©y ~vF G (2.15)

We note that both the reference state and perturbation terms have been retained in
Equation (2.13) because the gradient of the reference state entropy (so) varies in ampli-
tude from O(e) in the convection zone to O(1) in the convectively stable region. This
scaling is also true for the term involving thermal diffusion of the reference temperature
(kr000/0r). We retain the term «,00/9r because we wish to allow for small deviations
of the radiative heat flux from spherical symmetry.

The viscosity coefficient v is assumed to be a function of the reference density pg. The
functional dependence is obtained from mixing length theory, and the specific value is
chosen in an ad hoc fashion for a given numerical resolution and combination of parame-
ters. Our main goal in this work is to replace these “mixing length” viscosity and thermal
diffusivity with those based on Smagorinsky subgrid scale model. More details will be
presented in §2.2.

The reference state is crucial in the simulation of the anelastic system. In the ASH code,
the reference state is updated only every few hundred steps of advancing the anelastic
equations. During the update process, the following equations are solved simultaneously
for the reference pressure Py and density po:

1 dsg ldlnPo_dlnpo

20 2.1
Cpdr ~ dr dr ’ (2.16)
dP,
—_— = — . 2.1
dr pPog ( 7)

Using the reference entropy gradient (ds¢/dr) and gravity (g(r)) profiles from the
previous time step, Equations (2.16) and (2.17) are solved for the reference pressure
and density. Figure 1 is an example from one of the ASH simulations. With similar
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FI1GURE 1. Reference state from ASH simulations, the horizontal axis is radial coordinate in units
of solar radius. Panel (a): Reference pressure (dyne/cm?) within the convection zone. Panel (b):
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FIGURE 2. Panels (a) and (b): Differential rotation for the AB case in Brun & Toomre (2002)
with different initial conditions. Panel (c) is the time-averaged rotation rates from five years of
GONG data.

reference states and viscosity profiles to those illustrated in figure 1, simulations of the
ASH code have successfully generated differential rotation profiles that are similar to
the solar observations. An example from ASH simulations is illustrated in figure 2. The
numerical resolution for figure 2 is 65 x 128 x 256 in the radial, latitudinal, and azimuthal
directions. The left panel is a filled contour plot of the averaged angular velocity as a
function of latitude and radius, while the right panel shows the angular velocity at five
latitudes as a function of radius from the bottom to the top of the convection zone. For
this particular case, the viscosity is a prescribed function of radius as shown in figure
1(c), and the Prandt]l number is fixed at 1/4. This corresponds to the AB case in Brun
& Toomre (2002), in which the differential rotation inside the convection zone is most
prominent among all the simulation data presented in Brun & Toomre (2002). Figure
2 is from simulations conducted on the NASA/Ames SGI cluster with different initial
conditions. A typical differential rotation from solar helioseismic observations is shown in
figure 2(c) (same as figure 1(b) in Brun & Toomre (2002)). The close similarity between
observational solar differential rotation and the simulation data shows great promise that
better results may be obtainable if the conveciton model is refined by building in more
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FIGURE 3. Panel (a): Energy flux scaled to the solar luminosity. Panel (b): Radial components
of the momentum fluxes. Panel (c): Latitudinal components of the momentum fluxes.

physics. For example, the viscosity and thermal diffusivity may be replaced by better
dynamical models. Addition of a mechanism to couple the convection zone with the
tachocline below may result in better agreement between simulation and observational
data. As a preliminary initiative we have undertaken is to first improve the model for
viscosity using Smagorinsky-Lilly’s model. Finally in figure 3 we show several energy
fluxes and momentum fluxes as functions of r for the AB case:

Fe = radial enthalpy flux = Cppv,(T — T), (2.18)
Fk = radial kinetic energy flux = v, K.E., (2.19)
d . (oT,  oT .
Fr = radiative flux = — oCp,— |VArT — —P 2.2
radiative flux KradpClhp . VAarT + (ass + 2P ) ) (2.20)
Solar luminosity
Fu = unresolved eddy flux = Koo~ 5 (2.21)
7
R = prsin 6(vjvy), (2.22)
M = prsin 6{v;) ((vg) + Qor sin9) (2.23)
V = prsinf [—uﬂé (@—¢))] for panel (b), or (2.24)
r Or\ r

r 060 \sinf

The index i in equations 2.22 and 2.23 corresponds to the r component for panel b in
figure 3, while for panel ¢ the index ¢ corresponds to the § component.

V = prsiné [—Vﬂg (@—¢>)] for panel (c).

2.2. Smagorinsky-Lilly SGS model

The principle underlying the Smagorinsky subgrid scale model is the balance of pro-
duction of subgrid-scale turbulent kinetic energy and dissipation of isotropic turbulence
energy at the characteristic eddy size. Let the subgrid turbulent production rate be de-
noted by P, then for a given turbulent viscosity vr, the subgrid turbulent production
rate is

P = 21/Te,~je,~j. (225)
The dissipation at scale [ is ~ ¢*/l, where ¢ is a characteristic turbulent velocity. Finally,

to find an expression for v in terms of the resolved quantities, we utilize the Prandtl’s
assumption: v = Ciql, and upon substituting ¢ into the dissipation rate and equating
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dissipation and production rates, we obtain the Smagorinsky subgrid scale model

v = (Csl)Q\/Qeijeij, (2.26)

where Cs is a constant in the range of 0.1 < Cs < 0.3. Lilly (1962) later extended the
Smagorinsky model to turbulence in unstably stratified convection. Due to the stratifi-
cation an additional parameter, the Richardson number, appears in the expression for
the eddy viscosity. The idea that led to Lilly’s eddy viscosity is very similar to the above
argument underlying the Smagorinsky model: buoyancy production or consumption must
also be accounted for in the subgrid energy balance. Thus in the stratified case, the dis-
sipation consists of contribution from both eddy dissipation and thermal diffusion. The
Smagorinsky-Lilly eddy viscosity is simply the modified Smagorinsky model with the
inclusion of stratification effect

0.5
v = (Csl)%/Qeijeij |:1 — IZ—TRZf:| - (2.27)
T
Here k7 is the eddy thermal diffusivity, and the flux Richardson number is defined as
, g Olnéd
= . 2.2
le 261']'62']' or ( 8)

Alternatively, the flux Richardson number can also be defined through entropy as

g Osg/Or
B Qez-jeij Cp ’

(2.29)

where 9s¢/0r is the reference entropy gradient. In spherical geometry, we choose the

length scale [ as
2 1/3
= (%) , (2.30)
Lmam(Lmaz + 1)
where A(r) is the radial grid spacing at location 7, Ly, is the maximum (latitudinal)
angular mode index.

In the simulations we start from a stationary configuration with a negative reference
entropy gradient throughout the convection zone. The boundary conditions for the ve-
locity are stress free, which are not necessarily realistic but numerically convenient. As
we are mostly interested in the differential rotation profile in the convection zone, the
parameters and initial reference state are chosen to be the same as the AB case in
Brun & Toomre (2002). We first obtain a turbulent convection zone using the mixing
length viscosity and thermal diffusivity. As the simulation progresses, the differential ro-
tation profile reaches a statistically stationary state. We then replace the mixing length
viscosity and thermal diffusivity with the Smagorinsky-Lilly model with a prescribed
constant coeflicient Cs. For the following results, we present ASH simulations using the
Smagorinsky-Lilly eddy viscosity to see how the differential rotation may differ from that
obtained with the “mixing length” viscosity and thermal diffusivity.

3. Thermal diffusivity and differential rotation

Using the Smagoranski-Lilly SGS model with a fixed Cs = 0.3, an eddy Prandtl number
of 0.7 and restarting from the AB case (with a differential rotation in figure 2), we
find that the differential rotation to deteriorate and the spread in the angular velocity
decreases to a smaller value (~ 60 nHz) as shown in figure 4. Similar results are found
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as we vary C, and the eddy Prandtl number. In figure 5 we show the fluxes for this
simulation when the “statistically” steady state is reached.

We notice that the energy balance is worsened due to the decrease in the radial enthalpy
flux (Fe) and the unresolved eddy flux (Fu). Based on the fact that the molecular thermal
diffusivity is much larger than the molecular viscosity in the solar convection, and also
the anelastic assumption that the base state evolves on the much slower time scale than
the convection, we separate the thermal diffusivity from the eddy viscosity as follows: we
adopt the thermal diffusivity from Brun & Toomre (2002) and use the Smagorinsky-Lilly
SGS model only for the eddy viscosity. This hybrid approach may be reasonable for very
small molecular Prandtl number convections. We then restart from the AB case again,
and in this case the differential rotation (figure 6) does not deteriorate as much as in
previous simulations where we fixed the eddy Prandtl number. Furthermore, we notice
that the momentum fluxes are closer to those from the AB simulations in Brun & Toomre
(2002). We further notice that the differential rotation profile from our hybrid modeling
is actually quite close to the observational differential profile (panel (c) in figure 2). Thus
we conclude that the thermal diffusion is a key ingredient in the anelastic modeling of
solar convection, especially in terms of the differential rotation and the balances in energy
and momentum fluxes.

This is encouraging for adopting the SGS modeling to extra-terrestrial turbulent con-
vection, where the molecular Prandt]l number is always much smaller than unity. Thus
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the energy balance on the micro scales may not be described by Lilly’s argument where
the eddy Prandtl number is assumed constant. In particular, the stratification in the
solar convection may be such that the compressibility and the large thermal diffusivity
conspire to give an eddy Prandtl number which depends on the radius. Thus it is possi-
ble that the dynamic procedure can give some insight to how the eddy Prandtl number
adjusts itself due to stratification and large molecular thermal diffusivity.
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Solar convection simulations
using a B-spline method

By T. Hartlep AND N. N. Mansour

1. Motivation and objectives

Convection plays a key role in energy transport and global circulation in the outer layers
of the Sun, in generation of solar magnetic fields and in many phenomena associated with
solar activity and variability. Observations of the solar surface reveal structures that have
been classified as granules, mesogranules, and supergranules. The nomenclature reflects
organization at three spatial scales ranging from about 1 Mm to 30 Mm.

Numerical simulations of the near surface region of the Sun (Stein & Nordlund 2000)
capture structures on the granular scale, but have not been able to detect organization
at large scales. The physical mechanism of supergranulation is presently unknown. It
has been suggested that supergranulation corresponds to a large convective cells which
develop due to enhanced convective instability in the Hell ionization layer. This layer
lies deeper than Stein & Nordlund have investigated so far.

We know that as we go deeper from the surface of the sun, the turbulence structures
become large, and the Mach number decreases. It is then advantageous to be able to
change the spatial resolution in all three coordinates as a function of depth. In addition,
it is numerically advantageous to use the anelastic approximation (Ogura & Phillips 1962;
Gough 1969; Gilman & Glatzmaier 1981) to the compressible Navier-Stokes equations
for deep domains. Using B-splines in one coordinate direction and Fourier methods in
the other two coordinate directions, Kravchenko et al. (1996) and Loulou et al. (1997)
have developed B-spline—spectral numerical schemes that enable changing the resolution
as a function of height. Kravchenko et al. (1996) applied the scheme to simulate the
fully developed turbulent channel flow by resolving the near-wall region and relaxing the
resolution in the core region. Loulou et al. (1997) simulated a fully developed turbulent
pipe flow. They applied the scheme to remove the centerline singularity in cylindrical
coordinates.

2. Numerical method

Under this effort, a new code to simulate a rectilinear section of the solar convection
zone is being implemented. As a first step, the numerical method is implemented for a
simple Boussinesq fluid (Oberbeck 1879; Boussinesq 1903) and is presented in this paper
for this case only. Later, once the new code is fully functional and tested, equations based
on the anelastic approximation will be used.

2.1. Basic equations

Using the temperature difference across the fluid layer, AT, the layer thickness d and the
thermal diffusion time d?/x as units of temperature, length and time, the dimensionless
Boussinesq equations read:

0T+ (¥- V)0 = =Vr + PrV># 4+ RaPrbé,, (2.1)
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00+ (T-V)=V30+7-¢,, (2.2)
V-5=0. (2.3)
¥, 8 and w denote the velocity of the fluid and the deviations of the temperature and
pressure from their static profiles, i.e. the temperature and pressure profiles that would be
observed in the case of no motion. The equations contain two dimensionless parameters:
the Prandtl number Pr and the Rayleigh number Ra, which are defined as
ATd?
Pr=Y Ra=22""% (2.4)
K KV
with k, v, @ and g being the coefficients of thermal conductivity, kinematic viscosity
and thermal expansion, and the accelleration due to gravity, which points in negative
z direction. The Boussinesq approximation assumes all these properties to be constant
throughout the layer.

2.2. Velocity decomposition

A poloidal/toroidal decomposition is used for the velocity to automatically fulfill the
continuity equation V -@ = 0. Even though the divergence of the velocity does not vanish
in the anelatic approximation, the equations that we are ultimately going to use, such a
representation can still be used. Just not for the velocity itself, but for the quantity po9,
where pg denotes the reference density.

In the Boussinesq case, the representation is in the form of

U@y, 2,t) =V x [P(z,y,2,0)&] + V x V x [p(z,y,2,)&] + U(z,1).  (2.5)

In this way the poloidal and toroidal scalars ¢ and v are periodic in  and y, and U
represents the horizontal average of the velocity, i.e

[j(zat) = <17(x,y,z,t)>

The z component of U must be zero to satisfy the continuity equation. U is thus a
toroidal flow. However, the corresponding toroidal scalar varies linearly in z and y and is
unbounded. Obviously, we require ¢ to be periodic and to remain finite in the numerical
representation. Therefore U needs to be included in the decomposition of @ (Schmitt &
von Wahl 1992).

Equations of motion for ¢, ¥ and U can be derived by evaluating the z component
of the curl of the curl of (2.1), the z component of the curl of (2.1) and the horizontal
average of (2.1), respectively.

(2.6)

zy"

2.3. Spectral method for the horizontal directions

Periodic boundary conditions are used in the horizontal directions to reduce the influence
of the horizontal boundaries on the flow. A natural choice is the use of Fourier modes in
those directions, i.e.

F@,y,2,t) = Y frlz,t)ekathow) (f = ,4,0), (2.7)
E

with k = ky€z + ky€y being the horizontal wave vector. Multiplying the equations of
motion with weight functions eikar+kyy) and integrating over the entire horizontal plane
then yields equations for the z and ¢ dependent Fourier coefficients:

(02 — )[01 — Prio? - K] Gg(z1) = Ry, (2,1, (28)

E
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(00— Prie? - k]| dz(z,t) = Ry,_(2,0), (2.9)
(60— 102 = K] 05(2,1) = R;._(2,1). (2.10)

All non-linear terms are contained in the right-hand sides R. The equation for Uis very
similar:

[0, — Pro?)U (z,

Ri(z,1). (2.11)

t) =
If fact, we can discuss the equation for vy, 67,; and U together, since they all can be
written in the form

[0¢ + Co — C282]f (2, 1) = Ry (2,1) (f = ¥ 05, 0), (2.12)

with some parameters Cy and Cs.

2.4. B-spline method for the vertical direction

Spatial discretization in the vertical direction z is done by a B-spline method (Kravchenko
& Moin 1998), i.e. the unknowns, ¢k,¢k,0 and U are expanded in terms of m-order
piecewise polynomials called basis splines, or B-splines. With a given set of knot points
{20,...,2n} that divide the z domain into N subintervals, one can construct N + m of
these spline functions using the recursive expression

B™(2) = z_zj——m—lgjm:ll(z) +

Zj1 = Zj-—m-1 Zj = Zj-m

S7% i) (G=1,...,N+m).

(2.13)
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Here, B]" denotes the j-th B-spline of order m. The 0-order splines are given by

0 1 ifz; 1 <z<z;
Bj(2) = { 0 othJerwise - (2.14)
As it turns out, m additional points at each side of the domain (z_p,,...,2_1 and
ZN41;---,2N+m) are needed in the construction of B-splines near the boundaries. These
virtual points are chosen to be equal to the boundary points zg and 2y, i€ 2_,, = ... =
z_1 =29 and ZN4m = ... = ZN+1 = ZN-
Second-order B-spline functions for two different sets of knot points are shown in
figure 1 to illustrate how these functions look like. As can be seen from the figure, B-
splines have compact support and are non-negative:

>0 ifzj_mo1 <2<z

Bj (z){ =0 otherwise ’ (2.15)

and can be tuned to the specific needs at hand by the choice of knot points. In areas
where small structures need to be resolve, e.g. in boundary layers, one can choose closely
spaced knot points, while in areas where such high resolution is not required, the grid
can be coarse to save computational costs.

Incorporating a B-spline expansion of the unknowns, i.e.

N+m

f(zat) = Z af,j(t)B;n(z) (f:(;]};:'lzjk‘;ék'aﬁ)a (216)

=1

into the governing equations (2.8) and (2.12), multiplying with weight functions B{* and
integrating over the z domain yields equations for the expansion coefficients ay ; (t):

N+4+m j
i

Z [((% + Co) (Mo): - 02 (Mz) :| Oéf’j = /Bszde (f = ’ng,éE, U), (2.17)
j=1

2 4 i 2 J J _ m

z; [—(k 8 + kA Pr) (Mo)i +(0; + 2k Pr)(Mg)i —PT(M4)i] a; ;= /B,. Ry dz.
j=

(2.18)

Three matrices, My, Ma and My, occur in these equations, which contain integrals of

the product of two B-splines and the product of a B-spline with a derivative of a B-spline:

mheMim_ [ pmang 4
= morBT =0,2,4). 2.1
(M) = [ Brorspa: m=0.2,9 (219)
It follows from the property (2.15) that all of these matrices are of band-diagonal form.
Specifically, they have only m subdiagonals and m superdiagonals which contain non-zero
entries.

2.5. Time advancement

A mixed implicit/explicit method using a Crank-Nicolson scheme for the diffusive terms
and a second-order Adams-Bashforth scheme for the advection and buoyancy terms is
used for the time advancement.

In the end, one has to solve a matrix equation for each Fourier mode of each field
(poloidal, toroidal, mean flow and temperature) in the form

Nfﬁf = gf, (2.20)
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with @y representing the vector of B-spline coefficients at the new time step t,1, i.e.
dy = (af1(tnt1)s- -, @5 Nym(tny1)) (f again stands for either ¢z, 9 ,0; or U), and
the matrix Ny is composed of the previously introduced matrices Mg, My and My. Ny
is therefore band-diagonal and a fast method for solving band-diagonal systems can be
used.

2.6. Imposing boundary conditions

So far, no boundary conditions have been imposed in the vertical direction. Since only
one B-spline, and the derivative of only two B-splines are non-zero at the boundary, it
is rather easy to implement various boundary conditions. If for example one needs to
prescribe the value of f(z,t) at the boundary 2z, e.g. f(z = z0,t) = g(t), one simply has
to set the first B-spline coefficient to that value, i.e. ay1(t) = g(t). The original equation
for ay,; has to be removed from the linear system (2.20), and oy ;’s contribution has to
be deducted from the right hand, i.e. equation (2.20) is modified in the following way:

* ok afi ﬁf,l
* || % afo ﬁfﬂ
*
Qfntk Btk
Qs By, *

. = _af71
* *
* Qf,ntk Bf,n+k

More complicated boundary conditions in which the value of the B-spline coefficients at
the boundary depend on the coefficients in the interior can be implemented by directly
manipulating the matrix elements of Ny.

2.7. Varying numerical resolution with depth

The main advantage of such a B-spline method is the ability to vary the spatial resolution
in all directions as a function of depth. As already mentioned, the choice of knot points
in the construction of the B-spline functions determines the vertical resolution. Near the
surface of the sun, where high spatial resolution is required, closely spaced knot points
will be chosen, while the spacing can be increased in deeper parts of the convection zone.
The spatial resolution in horizontal directions is determined by the number of Fourier
modes that one wants to consider in the discretization:

fz,y,2,t) = Z z af’j(t)e—i(kzm-i-kyy)BJT_n(z)
E

J

(f = o5, Y5, 0%)s (2.21)

and this number can be changed from one spline index j to the next. Since according
to (2.15) B-splines of different j overlap, the change in resolution occurs over several knot
points. A consequence of the variation of horizontal resolution is, that for a given set of
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wavenumbers k, and k, only a subset of B-splines has to be considered, namely those for
which the maximum wavenumbers that we have chosen are larger or equal to k, and k.
The other coefficients are zero and the corresponding rows and columns in the matrix
equations (2.20) can therefor be dropped to reduce the numerical cost.

3. Future work

The implementation of the presented numerical method is nearly complete and will be
tested shortly for some test cases of turbulent Rayleigh-Bénrad convection. Comparisons
will be done with the results obtained by Hartlep (2004) using a Chebyshev method. After
that, the anelastic equations will be implemented in place of the Boussinesq equations.

The final ingredient for the solar simulations is the definition of reasonable boundary
conditions. As a start, we can use rather simple conditions like the ones used by Miesch
(1998) and others: stress-free, impenetrable upper und lower boundaries with constant
heat flux at the bottom and constant entropy at the top of the computational domain. A
refinement to these boundary conditions would be the treatment of the upper surface as
a free surface, which could be realized by additionally tracking a height function h(z, y,t)
above the top end of the discretization (2.21).
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